Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms

按来源划分的电力成本 多目标优化 可再生能源 柴油发电机 光伏系统 工程类 发电 汽车工程 柴油 混合动力 工艺工程 可靠性工程 功率(物理) 计算机科学 电气工程 物理 量子力学 机器学习
作者
Ramin Cheraghi,Mohammad Hossein Jahangir
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:294: 117515-117515 被引量:98
标识
DOI:10.1016/j.enconman.2023.117515
摘要

Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂珩发布了新的文献求助10
刚刚
刚刚
寒冷的书白完成签到,获得积分20
1秒前
橙子发布了新的文献求助10
2秒前
Lucas应助李里哩采纳,获得10
2秒前
腼腆的初蓝完成签到,获得积分10
3秒前
4秒前
wz关注了科研通微信公众号
4秒前
狐妖完成签到,获得积分10
5秒前
wwwwww发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
辛勤秋双发布了新的文献求助20
6秒前
科目三应助亮仔采纳,获得10
6秒前
眯眯眼的小懒虫完成签到,获得积分10
7秒前
7秒前
董钰婷完成签到,获得积分10
7秒前
尊敬的惠发布了新的文献求助80
7秒前
7秒前
萝卜干完成签到,获得积分10
7秒前
7秒前
瑶瑶发布了新的文献求助20
8秒前
大个应助wuhan采纳,获得10
8秒前
XQJ完成签到,获得积分10
8秒前
NINI完成签到 ,获得积分10
8秒前
8秒前
Miianlli完成签到 ,获得积分10
9秒前
77发布了新的文献求助10
9秒前
脆脆鲨发布了新的文献求助10
10秒前
ee发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
小一发布了新的文献求助10
13秒前
13秒前
英俊的铭应助123456采纳,获得10
15秒前
清秀乌龟发布了新的文献求助10
15秒前
安详的惜梦完成签到 ,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082