Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms

按来源划分的电力成本 多目标优化 可再生能源 柴油发电机 光伏系统 工程类 发电 汽车工程 柴油 混合动力 工艺工程 可靠性工程 功率(物理) 计算机科学 电气工程 量子力学 机器学习 物理
作者
Ramin Cheraghi,Mohammad Hossein Jahangir
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:294: 117515-117515 被引量:98
标识
DOI:10.1016/j.enconman.2023.117515
摘要

Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZC完成签到,获得积分10
1秒前
1秒前
2秒前
fst完成签到 ,获得积分10
2秒前
4秒前
4秒前
每天我都睡得好完成签到 ,获得积分10
4秒前
凉面发布了新的文献求助10
5秒前
楠木木发布了新的文献求助10
6秒前
无欲无求发布了新的文献求助10
6秒前
努力发布了新的文献求助10
7秒前
上官若男应助MJH123456采纳,获得10
7秒前
CXS发布了新的文献求助10
7秒前
8秒前
666关注了科研通微信公众号
8秒前
jiang发布了新的文献求助10
8秒前
9秒前
wzc完成签到 ,获得积分10
10秒前
射鵰不慎闪腰完成签到,获得积分10
11秒前
享耳完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
hhh发布了新的文献求助10
12秒前
13秒前
14秒前
2641490618发布了新的文献求助10
14秒前
LBJBowen23发布了新的文献求助10
15秒前
clownnn发布了新的文献求助10
15秒前
跳跃雨泽发布了新的文献求助10
17秒前
爱吃黄焖鸡的完成签到,获得积分10
17秒前
在水一方应助楠木木采纳,获得10
17秒前
sulab完成签到,获得积分20
17秒前
天天快乐应助凉面采纳,获得10
18秒前
18秒前
19秒前
19秒前
添添发布了新的文献求助10
19秒前
2641490618完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764