清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms

按来源划分的电力成本 多目标优化 可再生能源 柴油发电机 光伏系统 工程类 发电 汽车工程 柴油 混合动力 工艺工程 可靠性工程 功率(物理) 计算机科学 电气工程 量子力学 机器学习 物理
作者
Ramin Cheraghi,Mohammad Hossein Jahangir
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:294: 117515-117515 被引量:98
标识
DOI:10.1016/j.enconman.2023.117515
摘要

Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
英姑应助勇往直前采纳,获得10
9秒前
无私雅柏完成签到 ,获得积分10
10秒前
生动冰海完成签到 ,获得积分10
11秒前
zoey发布了新的文献求助10
14秒前
bo完成签到 ,获得积分10
17秒前
22秒前
李健的粉丝团团长应助Msc采纳,获得10
23秒前
落霞与孤鹜齐飞完成签到,获得积分10
26秒前
勇往直前发布了新的文献求助10
28秒前
万能图书馆应助zoey采纳,获得10
32秒前
33秒前
Msc发布了新的文献求助10
39秒前
左丘映易完成签到,获得积分0
45秒前
naczx完成签到,获得积分0
46秒前
yzhilson完成签到 ,获得积分0
50秒前
LiangRen完成签到 ,获得积分10
1分钟前
1分钟前
zoey发布了新的文献求助10
1分钟前
zoey完成签到,获得积分10
1分钟前
zzz111发布了新的文献求助10
1分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
久晓完成签到 ,获得积分10
2分钟前
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
Lanyiyang发布了新的文献求助10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
周全完成签到 ,获得积分10
3分钟前
燕儿完成签到 ,获得积分10
3分钟前
liliAnh完成签到 ,获得积分10
3分钟前
Hilda007应助Lanyiyang采纳,获得10
3分钟前
科研通AI6应助leapper采纳,获得10
3分钟前
crystaler完成签到 ,获得积分10
3分钟前
zhaoyg发布了新的文献求助10
3分钟前
Criminology34应助美丽的老头采纳,获得30
3分钟前
Hilda007应助Lanyiyang采纳,获得10
3分钟前
Hao应助科研通管家采纳,获得10
3分钟前
Hao应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438737
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221075
捐赠科研通 4470805
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417484