Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms

按来源划分的电力成本 多目标优化 可再生能源 柴油发电机 光伏系统 工程类 发电 汽车工程 柴油 混合动力 工艺工程 可靠性工程 功率(物理) 计算机科学 电气工程 量子力学 机器学习 物理
作者
Ramin Cheraghi,Mohammad Hossein Jahangir
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:294: 117515-117515 被引量:98
标识
DOI:10.1016/j.enconman.2023.117515
摘要

Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的谷蓝完成签到,获得积分20
刚刚
丘比特应助山药汤采纳,获得10
刚刚
刚刚
科目三应助张欢欢采纳,获得10
1秒前
852应助疯狂硕士采纳,获得10
2秒前
weiliu完成签到,获得积分10
2秒前
4秒前
清阙发布了新的文献求助10
4秒前
Hello应助ll采纳,获得10
5秒前
隐形曼青应助渡月桥采纳,获得10
5秒前
orange9完成签到,获得积分10
8秒前
不可能吃香菜完成签到,获得积分10
8秒前
fuchao发布了新的文献求助10
9秒前
seven完成签到,获得积分20
9秒前
11秒前
mddy完成签到,获得积分10
13秒前
暴走芭比发布了新的文献求助10
15秒前
大个应助seven采纳,获得10
15秒前
16秒前
17秒前
19秒前
19秒前
糖不太甜发布了新的文献求助10
19秒前
20秒前
pluto应助结实幼枫采纳,获得10
20秒前
疯狂硕士发布了新的文献求助10
21秒前
didi发布了新的文献求助10
21秒前
小松菜奈发布了新的文献求助10
22秒前
深情未来完成签到,获得积分10
22秒前
Grace159完成签到 ,获得积分10
22秒前
tjykdxzx完成签到,获得积分10
22秒前
张欢欢发布了新的文献求助10
23秒前
Faine发布了新的文献求助10
23秒前
尤静柏发布了新的文献求助10
23秒前
哈哈哈发布了新的文献求助10
23秒前
kingwill发布了新的文献求助30
23秒前
23秒前
柒年啵啵完成签到 ,获得积分10
25秒前
27秒前
shaqima发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567276
求助须知:如何正确求助?哪些是违规求助? 4651931
关于积分的说明 14698461
捐赠科研通 4593813
什么是DOI,文献DOI怎么找? 2520457
邀请新用户注册赠送积分活动 1492624
关于科研通互助平台的介绍 1463607