Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms

按来源划分的电力成本 多目标优化 可再生能源 柴油发电机 光伏系统 工程类 发电 汽车工程 柴油 混合动力 工艺工程 可靠性工程 功率(物理) 计算机科学 电气工程 物理 量子力学 机器学习
作者
Ramin Cheraghi,Mohammad Hossein Jahangir
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:294: 117515-117515 被引量:98
标识
DOI:10.1016/j.enconman.2023.117515
摘要

Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jinkk完成签到,获得积分10
刚刚
1秒前
2秒前
yyx完成签到 ,获得积分10
2秒前
科研通AI6应助lubby采纳,获得10
2秒前
jie酱拌面应助ikun采纳,获得10
3秒前
CipherSage应助芋泥脑袋采纳,获得10
3秒前
4秒前
冷傲迎梦完成签到,获得积分10
4秒前
4秒前
4秒前
xiaobei发布了新的文献求助10
4秒前
4秒前
5秒前
小巧大碗发布了新的文献求助10
5秒前
淡定的美女完成签到,获得积分10
6秒前
JamesPei应助浮生若梦采纳,获得20
6秒前
6秒前
WLWLW给一日清晨的求助进行了留言
6秒前
彭于晏应助cc采纳,获得10
7秒前
9527King完成签到,获得积分10
7秒前
aaatan发布了新的文献求助10
7秒前
有魅力的盼旋完成签到 ,获得积分10
8秒前
璐璐发布了新的文献求助20
9秒前
FashionBoy应助自觉的千凝采纳,获得10
9秒前
GH完成签到,获得积分10
10秒前
10秒前
Akim应助zp12345采纳,获得10
10秒前
10秒前
陈冲发布了新的文献求助10
10秒前
xmz应助动听服饰采纳,获得10
11秒前
11秒前
风控发布了新的文献求助10
12秒前
小蘑菇应助一年5篇采纳,获得10
13秒前
ZJPPPP应助123456789采纳,获得10
14秒前
博弈春秋完成签到,获得积分10
14秒前
肖兔兔完成签到,获得积分10
14秒前
Mr鹿发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794