Grey forecasting the impact of population and GDP on the carbon emission in a Chinese region

北京 大都市区 碳纤维 温室气体 环境科学 人口 自然资源经济学 中国 地理 环境保护 经济 计算机科学 人口学 考古 算法 社会学 复合数 生物 生态学
作者
Yongtong Li,Yan Chen,Yuliang Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:425: 139025-139025 被引量:7
标识
DOI:10.1016/j.jclepro.2023.139025
摘要

Beijing-Tianjin-Hebei metropolitan area is a significant carbon emission center. The region's early achievement of peak carbon targets is critical to the nation's achievement of peak carbon targets. In this paper, it is proposed to use different orders of grey models to classify into three scenarios. Based on three scenarios, the grey multivariate convolutional model with new information priority accumulation is adopted to predict carbon emissions in the Beijing-Tianjin-Hebei region and select the scenario suitable for local development. The results show that: (1) The Beijing region has already achieved peak carbon, the Tianjin region may not reach its peak carbon target by 2030, and the Hebei region is expected to reach its peak carbon target by 2030. (2) The high rate of carbon emission reduction scenario will greatly improve the air quality of Beijing. The low-speed growth carbon emission scenario is more in line with the future development of Tianjin city. The low-rate carbon reduction scenario is more in line with the synergistic governance of pollution reduction and carbon reduction in Hebei Province. (3) Beijing's population policy in the most recent years has been conducive to improving the local environment. Tianjin's medium-term population policy is more in line with the local area. Hebei's medium-term industrial structure reform is favorable to local development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
17完成签到,获得积分10
1秒前
冷酷愚志完成签到,获得积分10
2秒前
北媛发布了新的文献求助10
3秒前
3秒前
Dr.feng发布了新的文献求助10
3秒前
3秒前
lcx完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
乾清宫喝奶茶完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
李涵完成签到,获得积分10
8秒前
欣欣完成签到,获得积分10
9秒前
傲娇林发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
研友_Z729Mn发布了新的文献求助10
13秒前
独特跳跳糖完成签到 ,获得积分10
14秒前
14秒前
hyl-tcm完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
LL发布了新的文献求助10
17秒前
xavier发布了新的文献求助10
17秒前
17秒前
孙意冉发布了新的文献求助10
18秒前
19秒前
hd发布了新的文献求助10
20秒前
21秒前
kakainho完成签到,获得积分10
21秒前
21秒前
坚定寒松完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474