Grey forecasting the impact of population and GDP on the carbon emission in a Chinese region

北京 大都市区 碳纤维 温室气体 环境科学 人口 自然资源经济学 中国 地理 环境保护 经济 计算机科学 人口学 考古 算法 社会学 复合数 生物 生态学
作者
Yongtong Li,Yan Chen,Yuliang Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:425: 139025-139025 被引量:7
标识
DOI:10.1016/j.jclepro.2023.139025
摘要

Beijing-Tianjin-Hebei metropolitan area is a significant carbon emission center. The region's early achievement of peak carbon targets is critical to the nation's achievement of peak carbon targets. In this paper, it is proposed to use different orders of grey models to classify into three scenarios. Based on three scenarios, the grey multivariate convolutional model with new information priority accumulation is adopted to predict carbon emissions in the Beijing-Tianjin-Hebei region and select the scenario suitable for local development. The results show that: (1) The Beijing region has already achieved peak carbon, the Tianjin region may not reach its peak carbon target by 2030, and the Hebei region is expected to reach its peak carbon target by 2030. (2) The high rate of carbon emission reduction scenario will greatly improve the air quality of Beijing. The low-speed growth carbon emission scenario is more in line with the future development of Tianjin city. The low-rate carbon reduction scenario is more in line with the synergistic governance of pollution reduction and carbon reduction in Hebei Province. (3) Beijing's population policy in the most recent years has been conducive to improving the local environment. Tianjin's medium-term population policy is more in line with the local area. Hebei's medium-term industrial structure reform is favorable to local development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HOAN应助星星采纳,获得30
刚刚
大模型应助唠叨的白曼采纳,获得10
刚刚
QAQ完成签到,获得积分10
刚刚
延陵君应助七月流火采纳,获得30
1秒前
2秒前
3秒前
nenoaowu发布了新的文献求助10
4秒前
QAQ发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
RXL应助ztxdy采纳,获得10
5秒前
5秒前
6秒前
濮阳香发布了新的文献求助10
7秒前
大蛋发布了新的文献求助10
8秒前
9秒前
喜东东完成签到,获得积分10
10秒前
迹K完成签到,获得积分10
11秒前
11秒前
邓大发啦啦啦完成签到,获得积分10
13秒前
13秒前
乐乐应助lala采纳,获得10
13秒前
橙色小瓶子完成签到,获得积分10
14秒前
15秒前
CipherSage应助濮阳香采纳,获得10
15秒前
harry发布了新的文献求助10
15秒前
16秒前
子车茗应助ztxdy采纳,获得30
16秒前
可耐的亦瑶完成签到,获得积分10
17秒前
乐乐应助chanyelo采纳,获得10
17秒前
17秒前
烟花应助nenoaowu采纳,获得10
17秒前
songhan完成签到,获得积分10
18秒前
zhaoyy完成签到,获得积分20
18秒前
XLYIDNNQJB完成签到,获得积分10
18秒前
温婉的凝芙完成签到 ,获得积分10
19秒前
Duha完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
唐煜城发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756