Grey forecasting the impact of population and GDP on the carbon emission in a Chinese region

北京 大都市区 碳纤维 温室气体 环境科学 人口 自然资源经济学 中国 地理 环境保护 经济 计算机科学 人口学 考古 算法 社会学 复合数 生物 生态学
作者
Yongtong Li,Yan Chen,Yuliang Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:425: 139025-139025 被引量:7
标识
DOI:10.1016/j.jclepro.2023.139025
摘要

Beijing-Tianjin-Hebei metropolitan area is a significant carbon emission center. The region's early achievement of peak carbon targets is critical to the nation's achievement of peak carbon targets. In this paper, it is proposed to use different orders of grey models to classify into three scenarios. Based on three scenarios, the grey multivariate convolutional model with new information priority accumulation is adopted to predict carbon emissions in the Beijing-Tianjin-Hebei region and select the scenario suitable for local development. The results show that: (1) The Beijing region has already achieved peak carbon, the Tianjin region may not reach its peak carbon target by 2030, and the Hebei region is expected to reach its peak carbon target by 2030. (2) The high rate of carbon emission reduction scenario will greatly improve the air quality of Beijing. The low-speed growth carbon emission scenario is more in line with the future development of Tianjin city. The low-rate carbon reduction scenario is more in line with the synergistic governance of pollution reduction and carbon reduction in Hebei Province. (3) Beijing's population policy in the most recent years has been conducive to improving the local environment. Tianjin's medium-term population policy is more in line with the local area. Hebei's medium-term industrial structure reform is favorable to local development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lignin发布了新的文献求助10
刚刚
棋士应助Cloud采纳,获得10
刚刚
刚刚
蜀安应助笙箫采纳,获得30
刚刚
xiaoman发布了新的文献求助10
1秒前
sens完成签到,获得积分10
1秒前
是帆帆呀完成签到,获得积分10
1秒前
WZ发布了新的文献求助10
2秒前
A羊_发布了新的文献求助10
2秒前
3秒前
3秒前
JamesPei应助霸气剑通采纳,获得10
4秒前
merlinsong发布了新的文献求助10
5秒前
5秒前
6秒前
花花发布了新的文献求助10
6秒前
Walker完成签到,获得积分10
6秒前
华仔应助落寞的采文采纳,获得10
7秒前
青鱼发布了新的文献求助10
7秒前
lignin完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
TIANEO完成签到,获得积分20
8秒前
cytomix完成签到,获得积分10
8秒前
orixero应助年轻的冰淇淋采纳,获得10
8秒前
清新王老吉完成签到,获得积分10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
默默海露完成签到,获得积分20
10秒前
Vicky1111完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
BUG完成签到,获得积分10
12秒前
邓施展关注了科研通微信公众号
12秒前
14秒前
Cloud发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425