已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Proof-of-Concept Study for Model-Based Construction Safety Diagnosis and Management Driven by Prevention through Design

风险分析(工程) 施工现场安全 工程类 风险管理 建筑信息建模 风险评估 建筑工程 未来研究 安全案例 运输工程 计算机科学 运营管理 计算机安全 业务 结构工程 财务 人工智能 调度(生产过程)
作者
Soowon Chang,Heung Jin Oh,JeeHee Lee,J. A. Perkins
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:39 (6) 被引量:6
标识
DOI:10.1061/jmenea.meeng-5474
摘要

The primary objective of this research is to demonstrate the feasibility of a model-based construction safety assessment system using building information modeling (BIM) and diagnosing accident-prone BIM objects through prevention through design (PtD). Although extensive research has focused on early risk detection and accident predictions in safety, previous approaches have often missed opportunities to identify safety issues arising from design choices. Potential safety risks have been assessed retrospectively by reconstructing safety concerns based on completed design options. To address this gap, this research aims to provide foresight regarding construction safety hazards from the early design stage. First, risks embedded in design decisions are identified by analyzing safety incident reports using text-mining techniques. Then, the relationships among design elements, accident precursors, and risk events are established through if-then relationships. The potential hazards associated with design choices are evaluated by developing and running visual scripts and assessing design model parameters in BIM. This approach enables architects to track construction risks during their design stage, even without extensive onsite construction experience. In addition, owners can evaluate design decisions considering construction safety risks, and contractors can forecast and monitor risky elements, materials, and locations during construction execution. The research outcomes contribute to enhancing safety risk awareness in the early design phases and support efficient and predictive safety management during construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙留香关注了科研通微信公众号
刚刚
1秒前
2秒前
cdercder应助Nebula采纳,获得60
2秒前
无花果应助ALpha采纳,获得10
5秒前
干净千青发布了新的文献求助10
5秒前
Owen应助独特的麦片采纳,获得10
5秒前
6秒前
提桶跑路完成签到 ,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
李爱国应助ljjxd采纳,获得10
8秒前
传奇3应助乐观的非笑采纳,获得10
9秒前
领导范儿应助milv5采纳,获得10
9秒前
kingmin应助小蛇玩采纳,获得10
9秒前
充电宝应助LAZYj采纳,获得10
9秒前
11秒前
花椰菜发布了新的文献求助10
12秒前
橙留香发布了新的文献求助10
13秒前
周城发布了新的文献求助20
13秒前
科研通AI5应助ALpha采纳,获得10
17秒前
海贼学术完成签到 ,获得积分10
19秒前
科研通AI5应助Shiku采纳,获得10
19秒前
欣喜的山河完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
小马甲应助blue2021采纳,获得10
23秒前
24秒前
赘婿应助飞快的代天采纳,获得10
24秒前
milv5发布了新的文献求助10
25秒前
852应助干净千青采纳,获得10
26秒前
小蛇玩完成签到,获得积分10
27秒前
28秒前
ChenYX发布了新的文献求助60
29秒前
呼呼夫人发布了新的文献求助10
29秒前
科研通AI5应助ALpha采纳,获得10
30秒前
打打应助Hanna2021采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
桐桐应助spain123采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666248
求助须知:如何正确求助?哪些是违规求助? 3225295
关于积分的说明 9762306
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759223
科研通“疑难数据库(出版商)”最低求助积分说明 735166