Advancements in computer-assisted diagnosis of Alzheimer's disease: A comprehensive survey of neuroimaging methods and AI techniques for early detection

神经影像学 模式 计算机科学 人工智能 认知 深度学习 机器学习 数据科学 神经科学 心理学 社会科学 社会学
作者
Kogilavani Shanmugavadivel,V E Sathishkumar,Jaehyuk Cho,Malliga Subramanian
出处
期刊:Ageing Research Reviews [Elsevier]
卷期号:91: 102072-102072 被引量:13
标识
DOI:10.1016/j.arr.2023.102072
摘要

Alzheimer's Disease (AD) is a brain disorder that causes the brain to shrink and eventually causes brain cells to die. This neurological condition progressively hampers cognitive and memory functions, along with the ability to carry out fundamental tasks over time. From the symptoms it is very difficult to detect during its early stage. It has become necessary to develop a computer assisted diagnostic models for the early AD detection. This survey work, discussed about a review of 110 published AD detection methods and techniques from the year 2011 to till-date. This study lies in its comprehensive exploration of AD detection methods using a range of artificial intelligence (AI) techniques and neuroimaging modalities. By collecting and analysing 50 papers related to AD diagnosis datasets, the study provides a comprehensive understanding of the diversity of input types, subjects, and classes used in AD research. Summarizing 60 papers on methodologies gives researchers a succinct overview of various approaches that contribute to enhancing detection accuracy. From the review, data are acquired and pre-processed form multiple modalities of neuroimaging. This paper mainly focused on review of different datasets used, various feature extraction methods, parameters used in neuro images. To diagnosis the Alzheimer's disease, the existing methods utilized three most common artificial intelligence techniques such as machine learning, deep learning, and transfer learning. We conclude this survey work by providing future perspectives for AD diagnosis at early stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻烦~发布了新的文献求助30
2秒前
木南发布了新的文献求助10
2秒前
4秒前
东北三省完成签到,获得积分10
4秒前
4秒前
jackbauer发布了新的文献求助10
4秒前
暮霭沉沉应助胡楠采纳,获得10
5秒前
危机的道天关注了科研通微信公众号
6秒前
852应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得30
7秒前
加湿器应助科研通管家采纳,获得200
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
掌心完成签到,获得积分10
7秒前
7秒前
斯文败类应助研友_nPxRRn采纳,获得10
8秒前
10秒前
10秒前
暮霭沉沉应助木南采纳,获得10
12秒前
13秒前
FashionBoy应助sumugeng采纳,获得10
14秒前
yelis完成签到 ,获得积分10
14秒前
西瓜汁发布了新的文献求助10
14秒前
研友_nPxRRn完成签到,获得积分10
15秒前
AskNature完成签到,获得积分10
15秒前
15秒前
猪猪hero发布了新的文献求助30
15秒前
不和可乐完成签到 ,获得积分10
16秒前
麻烦~完成签到,获得积分10
16秒前
lss发布了新的文献求助10
16秒前
科研通AI2S应助sam采纳,获得10
16秒前
19秒前
安可瓶子发布了新的文献求助10
19秒前
落寞平萱发布了新的文献求助10
19秒前
小确幸发布了新的文献求助10
22秒前
猪猪hero完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892