抗癌药
计算生物学
计算机科学
医学
生物
药理学
药品
作者
Ranjini Jenifer R,Badruzzaman Choudhury,Mohammed Mujahid Alam,Balamurali MM,Kaushik Chanda
标识
DOI:10.1080/17568919.2025.2491303
摘要
The challenges in drug discovery aiming to mitigate cancer progression are the thrust area of scientific research for several decades. Since the advent of heterocyclic chemistry, drug discovery programs have made significant achievements that lead to the development of numerous drugs with broad spectrum of potencies, contributing to both diagnostic and therapeutic advancements. Till date, efforts to discover more potent and efficient drug candidates are underway to minimize adverse side effects of existing chemotherapeutics. In view of the above, small-molecule agonists that can interact with different immune modulators like toll like receptor-7 (TLR-7) and TLR-8 are being investigated and explored. These candidates are expected to display profound effect on anti-tumoral activity by enhancing the production of proinflammatory cytokines. Recently, numerous imidazoquinoline derivatives with proven TLR agonist activities have emerged as promising anticancer therapeutics. With advancements in technology and the evolution of new scopes in drug discovery, different strategies are being adopted, particularly with the help of nanotechnology, immune-technology, combination drug chemistry, etc., to curb the progression of various types of cancers. Herein, the novel strategies for cancer therapeutics with imidazoquinolines reported in the last 5 years, their structure-activity relationship along with important synthetic schemes for important TLR agonists, are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI