PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation

计算机科学 卷积(计算机科学) 衬垫 计算机视觉 旋转(数学) 分割 人工智能 模式(计算机接口) 计算机安全 人工神经网络 操作系统
作者
Xinyu Xu,Huazhen Liu,Tao Zhang,Huilin Xiong,Wenxian Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3558425
摘要

Semantic segmentation is an important branch of image processing and computer vision. With the popularity of deep learning, various convolutional neural networks have been proposed for pixel-level classification and segmentation tasks. In practical scenarios, however, imaging angles are often arbitrary, encompassing instances such as water body images from remote sensing and capillary and polyp images in the medical domain, where prior orientation information is typically unavailable to guide these networks to extract more effective features. In this case, learning features from objects with diverse orientation information poses a significant challenge, as the majority of CNN-based semantic segmentation networks lack rotation equivariance to resist the disturbance from orientation information. To address this challenge, this paper first constructs a universal convolutiongroup framework aimed at more fully utilizing orientation information and equipping the network with rotation equivariance. Subsequently, we mathematically design a padding-based rotation equivariant convolution mode (PreCM), which is not only applicable to multi-scale images and convolutional kernels but can also serve as a replacement component for various types of convolutions, such as dilated convolutions, transposed convolutions, and asymmetric convolution. To quantitatively assess the impact of image rotation in semantic segmentation tasks, we also propose a new evaluation metric, Rotation Difference (RD). The replacement experiments related to six existing semantic segmentation networks on three datasets (i.e., Satellite Images of Water Bodies, DRIVE, and Floodnet) show that, the average Intersection Over Union (IOU) of their PreCM-based versions respectively improve 6.91%, 10.63%, 4.53%, 5.93%, 7.48%, 8.33% compared to their original versions in terms of random angle rotation. And the average RD values are decreased by 3.58%, 4.56%, 3.47%, 3.66%, 3.47%, 3.43% respectively. The code can be download from https://github.com/XinyuXu414.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
小张完成签到,获得积分10
3秒前
3秒前
是哇哦发布了新的文献求助10
5秒前
6秒前
7秒前
星辰大海应助slx采纳,获得10
7秒前
西门博超发布了新的文献求助10
8秒前
科研通AI2S应助江楠采纳,获得10
9秒前
10秒前
领导范儿应助南星采纳,获得10
10秒前
二掌柜发布了新的文献求助10
10秒前
11秒前
HebingTang应助杀死那条鱼采纳,获得10
11秒前
科研通AI5应助tingtingliuok采纳,获得10
12秒前
ok发布了新的文献求助10
14秒前
感动的薄荷完成签到,获得积分10
16秒前
xiao完成签到 ,获得积分10
16秒前
17秒前
wanci应助lazysheep采纳,获得30
19秒前
我住隔壁我姓王完成签到,获得积分10
19秒前
21秒前
库里强发布了新的文献求助10
22秒前
今后应助山水之乐采纳,获得10
23秒前
胡萝卜发布了新的文献求助10
24秒前
24秒前
是哇哦完成签到,获得积分10
24秒前
orixero应助emmm采纳,获得10
25秒前
sherry221发布了新的文献求助10
26秒前
会化蝶发布了新的文献求助10
27秒前
逆行的路人完成签到,获得积分10
28秒前
tingtingliuok发布了新的文献求助10
29秒前
酷波er应助小C采纳,获得10
29秒前
30秒前
库里强完成签到,获得积分10
30秒前
沉默的小天鹅应助1012077054采纳,获得10
31秒前
SYLH应助guojingjing采纳,获得30
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745812
求助须知:如何正确求助?哪些是违规求助? 3288765
关于积分的说明 10060476
捐赠科研通 3004943
什么是DOI,文献DOI怎么找? 1650009
邀请新用户注册赠送积分活动 785662
科研通“疑难数据库(出版商)”最低求助积分说明 751204