EFNA1 promotes the tumorigenesis and metastasis of cervical cancer by phosphorylation pathway and epithelial-mesenchymal transition

癌症研究 癌变 生物 上皮-间质转换 基因敲除 PI3K/AKT/mTOR通路 转移 蛋白激酶B 信号转导 MAPK/ERK通路 癌症 基因 细胞生物学 遗传学
作者
Xiaorui Dong,Xixi Chen,Mengling Xue,Yina Zhang,Peiyue Jiang
出处
期刊:Acta histochemica [Elsevier]
卷期号:127 (2): 152236-152236
标识
DOI:10.1016/j.acthis.2025.152236
摘要

Cervical cancer (CC) is a common gynecological disease that seriously threatens women's health. This study aims to explore key genes and pathways related to CC prognosis through bioinformatics, providing new insights for further treatment of CC. CC patient data were analyzed from the public databases. The enrichment analyses explored the roles and pathways of CC-related differentially expressed genes (DEGs). A prognostic key gene was identified using Venn diagrams and subjected to survival analysis. Gene Set Enrichment Analysis (GSEA) was employed to investigate the potential pathways of key genes. Correlations between the key gene and clinical features were examined. The function of the key gene was validated through immunohistochemistry, flow cytometry, transwell, MTT, and Western blot assays in vitro and in vivo. Our research identified 2459 upregulated genes among DEGs between healthy and tumor cervical tissues. These DEGs were primarily enriched in the PI3K-AKT and MAPK pathways. Moreover, EFNA1 was recognized as a key prognostic gene in CC, with elevated expression compared to normal tissue. A negative correlation between EFNA1 levels and patient survival rates was corroborated by Kaplan-Meier analysis. Furthermore, EFNA1 expression correlated with the cancer stage and was linked to antigen presentation, folate synthesis, and IL-17 signaling. Knockdown of EFNA1 enhanced apoptosis and reduced migration, invasion, and proliferation in vitro and in vivo, inhibiting EMT and MAPK pathways. This study revealed the key signaling pathways in CC progression and identified EFNA1 as a crucial prognostic biomarker, potentially impacting CC treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LiuZhe发布了新的文献求助30
1秒前
1秒前
相反风发布了新的文献求助10
1秒前
1秒前
失眠的嫣应助oli采纳,获得10
2秒前
大个应助saber_panda采纳,获得10
2秒前
nanonamo完成签到,获得积分10
2秒前
男男的蓝完成签到,获得积分10
2秒前
乐观黑米发布了新的文献求助10
3秒前
3秒前
QDU完成签到,获得积分10
3秒前
无有发布了新的文献求助10
3秒前
4秒前
慕青应助季忆采纳,获得10
4秒前
4秒前
怕孤独的向露完成签到,获得积分10
4秒前
谁用的我的名字完成签到 ,获得积分10
4秒前
橙子发布了新的文献求助10
4秒前
猪猪发布了新的文献求助10
5秒前
赘婿应助马燚采纳,获得10
5秒前
5秒前
天天快乐应助trayheep采纳,获得10
5秒前
5秒前
时尚的雅柏完成签到 ,获得积分10
6秒前
HQQ完成签到,获得积分10
6秒前
祝君早日毕业完成签到,获得积分10
6秒前
钠离子完成签到,获得积分10
6秒前
7秒前
yzmb发布了新的文献求助10
7秒前
研友_ZGDVz8发布了新的文献求助10
7秒前
WL关闭了WL文献求助
7秒前
8秒前
8秒前
8秒前
张铭鑫发布了新的文献求助10
9秒前
Zxc发布了新的文献求助10
10秒前
10秒前
勤奋好学的欧完成签到,获得积分10
10秒前
小灰灰发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541333
求助须知:如何正确求助?哪些是违规求助? 3118565
关于积分的说明 9336428
捐赠科研通 2816508
什么是DOI,文献DOI怎么找? 1548438
邀请新用户注册赠送积分活动 721530
科研通“疑难数据库(出版商)”最低求助积分说明 712720