Three generations of advanced high strength steels (AHSS) have attracted considerable attention due to their excellent mechanical properties and relatively low cost. While there has been extensive research on the basic mechanical properties of AHSS, the impact energy absorption capacity, a critical property for ensuring passenger safety, has not been systematically investigated. In addition, the absence of standardized impact testing protocols for materials or structures hinders the comparison of results across different studies. The present review aims to provide a comparative analysis of the impact performance of thin‐walled structures and sheet specimens made from the three generations of AHSS. First, an introduction to the background of AHSS is presented. Widely used experimental techniques and specimen geometries are then reviewed. This is followed by a detailed review of recent relevant studies on the first, second, and third generations of AHSS. Emphasis is placed on investigating the influence of microstructure on impact performance and the underlying mechanisms governing high‐strain‐rate plastic deformation under impact loading. Various strategies to improve the impact performance of AHSS are also discussed.