AC-electric-field-controlled multi-component droplet coalescence at microscale

微尺度化学 聚结(物理) 电场 表面张力 材料科学 可控性 电介质 介电常数 流体学 电压 机械 电极 纳米技术 电导率 微通道 电容 光电子学 化学 电气工程 物理 热力学 工程类 数学教育 数学 量子力学 天体生物学 物理化学 应用数学
作者
Weidong Fang,Zhi Tao,Haiwang Li,Shuai Yin,Tiantong Xu,Yi Huang,Teck Neng Wong
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:23 (9): 2341-2355 被引量:7
标识
DOI:10.1039/d3lc00086a
摘要

Droplet coalescence with fast response, high controllability and monodispersity has been widely investigated in industrial production and bioengineering. Especially for droplets with multiple components, programmable manipulation of such droplets is crucial for practical applications. However, precise control of the dynamics can be challenging, owing to the complex boundaries and the interfacial and fluidic properties. AC electric fields, with their fast response and high flexibility, have attracted our interest. We design and fabricate an improved flow-focusing microchannel configuration together with a non-contact type of electrode featuring asymmetric geometries, based on which we conduct systematic investigations of the AC-electric-field-controlled coalescence of multi-component droplets at the microscale. Parameters such as flow rates, component ratio, surface tension, electric permittivity and conductivity were given our attention. The results show that droplet coalescence in different flow parameters can be achieved in milliseconds by adjusting the electrical conditions, which shows high controllability. Specifically, both the coalescence region and reaction time can be adjusted by a combination of applied voltage and frequency, and unique merging phenomena have appeared. One is contact coalescence with the approach of paired droplets, while the other is squeezing coalescence, which occurs in the start position and promotes the merging process. The fluid properties, such as the electric permittivity, conductivity and surface tension, present a significant influence on merging behavior. The increasing relative dielectric constant leads to a dramatic reduction of the start merging voltage from the original 250 V to 30 V. The range of effective voltage for coalescence decreases with the addition of surfactant, offering a stricter and yet higher selectivity on electrical conditions, about 1500 V. The conductivity presents a negative correlation with the start merging voltage due to the reduction of the dielectric stress, from 400 V to 1500 V. Finally, we achieve the precise fabrication process of the Janus droplet via implementation of the proposed method, where the components of the droplets and the coalescence conditions are well controlled. Our results can serve as a potent methodology to decipher the physics of multi-component droplet electro-coalescence and contribute to applications in chemical synthesis, bioassay and material synthesis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xieyangyu发布了新的文献求助10
1秒前
蓝天发布了新的文献求助10
1秒前
2秒前
L1完成签到,获得积分10
2秒前
2秒前
朝闻道完成签到 ,获得积分10
3秒前
4秒前
蒋建国完成签到,获得积分10
5秒前
hui发布了新的文献求助10
7秒前
wodke完成签到,获得积分10
7秒前
当时的发布了新的文献求助10
7秒前
hh完成签到 ,获得积分10
8秒前
小黄瓜896发布了新的文献求助10
9秒前
9秒前
山梦完成签到 ,获得积分10
10秒前
英姑应助美好斓采纳,获得10
10秒前
13秒前
Ruan_zzz完成签到 ,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
yangching完成签到,获得积分10
16秒前
17秒前
梦璃完成签到 ,获得积分10
17秒前
17秒前
18秒前
ere发布了新的文献求助10
19秒前
ZZ_star完成签到,获得积分10
19秒前
sjy完成签到,获得积分20
20秒前
在水一方应助李健春采纳,获得10
21秒前
苏桑焉完成签到 ,获得积分10
21秒前
美好斓发布了新的文献求助10
22秒前
23秒前
sjy发布了新的文献求助10
24秒前
24秒前
人生若只如初见关注了科研通微信公众号
26秒前
xuxuh1989完成签到 ,获得积分10
26秒前
ju龙哥完成签到,获得积分10
26秒前
安静的幻儿完成签到,获得积分10
26秒前
胖胖不胖胖完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603615
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14855047
捐赠科研通 4694226
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806