吸附
铝
核化学
化学
抗辐射性
环境化学
材料科学
无机化学
辐射
冶金
物理化学
光学
物理
作者
Yueying Wen,Yan Wu,Lejin Xu
出处
期刊:Toxics
[MDPI AG]
日期:2023-03-29
卷期号:11 (4): 321-321
被引量:1
标识
DOI:10.3390/toxics11040321
摘要
Irradiation resistance is important for adsorbents used in radioactive environments such as high-level liquid waste. In this work, a silica-based composite adsorbent (KAlFe(CN)6/SiO2) was synthesized and γ-irradiated from 10 to 1000 kGy. The angles of the main X-ray diffraction peaks slightly decreased with the increase in irradiation dose, and a minor decomposition of CN- occurred after irradiation to 1000 kGy, indicating that the KAlFe(CN)6/SiO2 adsorbent could preserve structural integrity with a dose below 100 kGy. In 1 to 7 M HNO3, the adsorption ability of the irradiated KAlFe(CN)6/SiO2 remained performant, with a higher Kd than 1625 cm3 g-1. The adsorption equilibrium of Pd(II) in 3 M HNO3 was attained within 45 min before and after irradiation. The maximal adsorption capacity Qe of the irradiated KAlFe(CN)6/SiO2 on Pd(II) ranged from 45.1 to 48.1 mg g-1. A 1.2% relative drop in Qe was observed after 100 kGy irradiation, showing that γ-irradiation lower than 100 kGy insignificantly affected the adsorption capacity of KAlFe(CN)6/SiO2. Calculating and comparing the structures and free energies of different adsorption products via the density functional theory (DFT) method showed that KAlFe(CN)6/SiO2 was more inclined to completely adsorb Pd(II) and spontaneously generate Pd[AlFe(CN)6]2.
科研通智能强力驱动
Strongly Powered by AbleSci AI