Lévy–Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation

聚类分析 人工智能 模式识别(心理学) 分割 色空间 算法 柯西分布 图像分割 数学 基于分割的对象分类 尺度空间分割 计算机科学 图像(数学) 统计
作者
Arunita Das,Amrita Namtirtha,Animesh Dutta
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:140: 110268-110268 被引量:1
标识
DOI:10.1016/j.asoc.2023.110268
摘要

Rough K-Means (RKM) is a well-known unsupervised clustering algorithm based on rough set logic that is utilized in a wide range of applications. However, when dealing with complex problems like image segmentation, it is frequently trapped in local optima during execution, resulting in undesirable segmentation results. To handle the issue in a realistic computing time, this study develops a Lévy–Cauchy Arithmetic Optimization Algorithm (LCAOA), an enhanced form of AOA, for performing rough clustering. The Levy flight and Cauchy distribution help in exploration and exploitation, respectively, in the proposed LCAOA. Therefore, well-balanced exploration and exploitation have been incorporated into LCAOA, which is a major problem of classical AOA. Opposition-based learning is also incorporated into LCAOA to maintain an efficient population during the optimization process. As the segmentation efficacy is somewhat dependent on the selection of color spaces caused by the non-illumination of regions, the suggested method employs the CIELab color space. The suggested method is compared to conventional and Nature-Inspired Optimization Algorithms (NIOA)-based state-of-the-art image segmentation techniques over traditional color images, color pathology images, and leaf images. The proposed clustering methodology outperforms all other examined clustering algorithms, according to the results of the experiments. For example, proposed LCAOA-based rough clustering gives average Feature Similarity Index (FSIM) values of 0.9513, 0.9688, and 0.9769 for traditional color images with 4, 6, and 8 clusters, respectively. The proposed technique is associated with an average FSIM value of 0.9525 for cluster number 2 in images of oral pathology. Lastly, for leaf images, the proposed approach yields a mean FSIM value of 0.9759 with an accuracy of greater than 97% for cluster number 2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助小黄油采纳,获得10
刚刚
小吃货完成签到,获得积分10
1秒前
斯文问旋完成签到,获得积分10
1秒前
万能图书馆应助fjaa采纳,获得10
1秒前
晓军发布了新的文献求助10
2秒前
2秒前
小蓝完成签到,获得积分10
2秒前
爱听歌的机器猫完成签到 ,获得积分10
2秒前
kingwill应助wyblobin采纳,获得20
2秒前
2秒前
Jincen完成签到,获得积分10
2秒前
liangliang完成签到,获得积分10
2秒前
FYm完成签到,获得积分10
2秒前
7ohnny完成签到,获得积分10
2秒前
rebeccahu发布了新的文献求助10
3秒前
3秒前
正己化人应助虚心的静枫采纳,获得10
4秒前
晓生完成签到,获得积分10
5秒前
5秒前
CodeCraft应助HalaMadrid采纳,获得10
5秒前
帅帅厅完成签到,获得积分10
6秒前
开心完成签到 ,获得积分10
6秒前
zd发布了新的文献求助10
6秒前
6秒前
18726352502完成签到,获得积分20
6秒前
无花果应助wxf采纳,获得10
7秒前
7秒前
拾柒完成签到,获得积分10
7秒前
Zx_1993应助晓军采纳,获得10
8秒前
alho完成签到 ,获得积分10
8秒前
柠檬九分酸完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
姚盈盈发布了新的文献求助10
8秒前
8秒前
小黄油完成签到,获得积分10
8秒前
齐纳完成签到 ,获得积分10
8秒前
8秒前
阿尼完成签到 ,获得积分10
8秒前
一口蛋黄苏完成签到,获得积分10
9秒前
绝望的老实人完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977