已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lévy–Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation

聚类分析 人工智能 模式识别(心理学) 分割 色空间 算法 柯西分布 图像分割 数学 基于分割的对象分类 尺度空间分割 计算机科学 图像(数学) 统计
作者
Arunita Das,Amrita Namtirtha,Animesh Dutta
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:140: 110268-110268 被引量:1
标识
DOI:10.1016/j.asoc.2023.110268
摘要

Rough K-Means (RKM) is a well-known unsupervised clustering algorithm based on rough set logic that is utilized in a wide range of applications. However, when dealing with complex problems like image segmentation, it is frequently trapped in local optima during execution, resulting in undesirable segmentation results. To handle the issue in a realistic computing time, this study develops a Lévy–Cauchy Arithmetic Optimization Algorithm (LCAOA), an enhanced form of AOA, for performing rough clustering. The Levy flight and Cauchy distribution help in exploration and exploitation, respectively, in the proposed LCAOA. Therefore, well-balanced exploration and exploitation have been incorporated into LCAOA, which is a major problem of classical AOA. Opposition-based learning is also incorporated into LCAOA to maintain an efficient population during the optimization process. As the segmentation efficacy is somewhat dependent on the selection of color spaces caused by the non-illumination of regions, the suggested method employs the CIELab color space. The suggested method is compared to conventional and Nature-Inspired Optimization Algorithms (NIOA)-based state-of-the-art image segmentation techniques over traditional color images, color pathology images, and leaf images. The proposed clustering methodology outperforms all other examined clustering algorithms, according to the results of the experiments. For example, proposed LCAOA-based rough clustering gives average Feature Similarity Index (FSIM) values of 0.9513, 0.9688, and 0.9769 for traditional color images with 4, 6, and 8 clusters, respectively. The proposed technique is associated with an average FSIM value of 0.9525 for cluster number 2 in images of oral pathology. Lastly, for leaf images, the proposed approach yields a mean FSIM value of 0.9759 with an accuracy of greater than 97% for cluster number 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss发布了新的文献求助10
1秒前
zxx关注了科研通微信公众号
2秒前
彩色的俊驰完成签到,获得积分10
2秒前
ppdzhu发布了新的文献求助10
2秒前
杨文海发布了新的文献求助10
5秒前
LAN完成签到,获得积分10
6秒前
8秒前
ltt完成签到,获得积分10
9秒前
10秒前
11秒前
今后应助Pauline采纳,获得10
11秒前
freesoul发布了新的文献求助10
12秒前
12秒前
13秒前
kk发布了新的文献求助10
15秒前
147完成签到,获得积分10
15秒前
16秒前
Meteor发布了新的文献求助10
16秒前
16秒前
zxx发布了新的文献求助10
18秒前
可爱的函函应助RonK采纳,获得10
19秒前
接受所有小饼干完成签到 ,获得积分10
20秒前
柳易槐发布了新的文献求助10
20秒前
21完成签到,获得积分10
21秒前
23秒前
23秒前
善学以致用应助Pauline采纳,获得10
24秒前
共享精神应助一个one子采纳,获得10
27秒前
明理思山发布了新的文献求助10
27秒前
晏詹完成签到,获得积分10
28秒前
科研通AI6应助freesoul采纳,获得10
28秒前
大模型应助freesoul采纳,获得10
28秒前
28秒前
29秒前
小诸葛发布了新的文献求助10
30秒前
归尘发布了新的文献求助10
30秒前
147发布了新的文献求助50
31秒前
32秒前
杨文海发布了新的文献求助10
33秒前
Hello应助ghost采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090076
求助须知:如何正确求助?哪些是违规求助? 4304701
关于积分的说明 13414655
捐赠科研通 4130369
什么是DOI,文献DOI怎么找? 2262239
邀请新用户注册赠送积分活动 1266168
关于科研通互助平台的介绍 1200858