Lévy–Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation

聚类分析 人工智能 模式识别(心理学) 分割 色空间 算法 柯西分布 图像分割 数学 基于分割的对象分类 尺度空间分割 计算机科学 图像(数学) 统计
作者
Arunita Das,Amrita Namtirtha,Animesh Dutta
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:140: 110268-110268 被引量:1
标识
DOI:10.1016/j.asoc.2023.110268
摘要

Rough K-Means (RKM) is a well-known unsupervised clustering algorithm based on rough set logic that is utilized in a wide range of applications. However, when dealing with complex problems like image segmentation, it is frequently trapped in local optima during execution, resulting in undesirable segmentation results. To handle the issue in a realistic computing time, this study develops a Lévy–Cauchy Arithmetic Optimization Algorithm (LCAOA), an enhanced form of AOA, for performing rough clustering. The Levy flight and Cauchy distribution help in exploration and exploitation, respectively, in the proposed LCAOA. Therefore, well-balanced exploration and exploitation have been incorporated into LCAOA, which is a major problem of classical AOA. Opposition-based learning is also incorporated into LCAOA to maintain an efficient population during the optimization process. As the segmentation efficacy is somewhat dependent on the selection of color spaces caused by the non-illumination of regions, the suggested method employs the CIELab color space. The suggested method is compared to conventional and Nature-Inspired Optimization Algorithms (NIOA)-based state-of-the-art image segmentation techniques over traditional color images, color pathology images, and leaf images. The proposed clustering methodology outperforms all other examined clustering algorithms, according to the results of the experiments. For example, proposed LCAOA-based rough clustering gives average Feature Similarity Index (FSIM) values of 0.9513, 0.9688, and 0.9769 for traditional color images with 4, 6, and 8 clusters, respectively. The proposed technique is associated with an average FSIM value of 0.9525 for cluster number 2 in images of oral pathology. Lastly, for leaf images, the proposed approach yields a mean FSIM value of 0.9759 with an accuracy of greater than 97% for cluster number 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolo完成签到 ,获得积分10
1秒前
ccccchen完成签到,获得积分10
1秒前
唐新惠完成签到 ,获得积分10
2秒前
务实的奇迹完成签到 ,获得积分10
4秒前
红叶完成签到,获得积分10
6秒前
花怂怂完成签到 ,获得积分20
7秒前
liucc完成签到,获得积分10
7秒前
suxianjiaozi完成签到,获得积分20
7秒前
wujuan1606完成签到 ,获得积分10
8秒前
甜晞完成签到,获得积分10
9秒前
854fycchjh完成签到,获得积分10
10秒前
wch071完成签到,获得积分10
10秒前
duanhuiyuan应助幽默小丸子采纳,获得10
12秒前
陈M雯发布了新的文献求助10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
36456657应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
kourosz完成签到,获得积分10
13秒前
十一克拉完成签到,获得积分10
17秒前
sdfwsdfsd完成签到,获得积分10
17秒前
欣欣子完成签到 ,获得积分10
18秒前
luluyang完成签到 ,获得积分10
20秒前
SciGPT应助姬昌采纳,获得10
21秒前
23秒前
顺利的妖妖完成签到 ,获得积分10
24秒前
夏虫完成签到,获得积分10
25秒前
hh完成签到,获得积分10
29秒前
毛豆应助幽默小丸子采纳,获得10
31秒前
干净思远完成签到,获得积分10
32秒前
1234完成签到 ,获得积分10
33秒前
simpleblue完成签到 ,获得积分10
33秒前
落叶完成签到 ,获得积分10
33秒前
paul完成签到,获得积分10
33秒前
33秒前
suxianjiaozi发布了新的文献求助10
37秒前
LY完成签到,获得积分10
37秒前
zyc完成签到,获得积分10
38秒前
Raymond完成签到,获得积分10
39秒前
oneeight完成签到,获得积分10
41秒前
毛豆应助幽默小丸子采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455715
求助须知:如何正确求助?哪些是违规求助? 3050986
关于积分的说明 9023247
捐赠科研通 2739538
什么是DOI,文献DOI怎么找? 1502921
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693432