Learning to Learn Task-Adaptive Hyperparameters for Few-Shot Learning

计算机科学 初始化 人工智能 机器学习 元学习(计算机科学) 超参数 适应(眼睛) 任务(项目管理) 光学(聚焦) 一般化 数学分析 物理 光学 经济 管理 程序设计语言 数学
作者
Sungyong Baik,Myungsub Choi,Janghoon Choi,Heewon Kim,Kyoung Mu Lee
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (3): 1441-1454 被引量:15
标识
DOI:10.1109/tpami.2023.3261387
摘要

The objective of few-shot learning is to design a system that can adapt to a given task with only few examples while achieving generalization. Model-agnostic meta-learning (MAML), which has recently gained the popularity for its simplicity and flexibility, learns a good initialization for fast adaptation to a task under few-data regime. However, its performance has been relatively limited especially when novel tasks are different from tasks previously seen during training. In this work, instead of searching for a better initialization, we focus on designing a better fast adaptation process. Consequently, we propose a new task-adaptive weight update rule that greatly enhances the fast adaptation process. Specifically, we introduce a small meta-network that can generate per-step hyperparameters for each given task: learning rate and weight decay coefficients. The experimental results validate that learning a good weight update rule for fast adaptation is the equally important component that has drawn relatively less attention in the recent few-shot learning approaches. Surprisingly, fast adaptation from random initialization with ALFA can already outperform MAML. Furthermore, the proposed weight-update rule is shown to consistently improve the task-adaptation capability of MAML across diverse problem domains: few-shot classification, cross-domain few-shot classification, regression, visual tracking, and video frame interpolation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助kook采纳,获得10
1秒前
Hello应助玛尼采纳,获得10
1秒前
彭于晏应助CCCC采纳,获得10
1秒前
yujieshi发布了新的文献求助10
1秒前
天天快乐应助Victor采纳,获得10
1秒前
lilia完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
华仔应助lazydoggy采纳,获得10
3秒前
Erin完成签到,获得积分10
4秒前
4秒前
爆米花应助阿巴阿巴采纳,获得10
5秒前
5秒前
5秒前
Mkstar完成签到,获得积分10
6秒前
8秒前
tina关注了科研通微信公众号
8秒前
9秒前
丘比特应助Javari采纳,获得10
9秒前
虚心的爆米花完成签到,获得积分10
9秒前
Emily完成签到 ,获得积分10
9秒前
10秒前
a61完成签到,获得积分10
11秒前
乐乐应助cun采纳,获得10
12秒前
z_king_d_23发布了新的文献求助10
13秒前
zhang狗子发布了新的文献求助10
13秒前
汉堡包应助ambition采纳,获得10
15秒前
Victor发布了新的文献求助10
15秒前
酷酷发布了新的文献求助10
15秒前
努力熊熊完成签到,获得积分10
15秒前
16秒前
17秒前
orixero应助camellia采纳,获得10
17秒前
陈梦娇发布了新的文献求助10
18秒前
小蘑菇应助科研怪采纳,获得10
19秒前
李健应助古乙丁三雨采纳,获得10
20秒前
CipherSage应助zhang狗子采纳,获得10
21秒前
Victor完成签到,获得积分20
22秒前
迷路雪曼发布了新的文献求助20
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732331
求助须知:如何正确求助?哪些是违规求助? 3276613
关于积分的说明 9997784
捐赠科研通 2992192
什么是DOI,文献DOI怎么找? 1642047
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701