Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset

自编码 计算机科学 能量(信号处理) 探测器 生成模型 数据挖掘 人工智能 人工神经网络 卷积神经网络 数据建模 机器学习 生成语法 数据库 数学 电信 统计
作者
Young Ghyu Sun,Jiyoung Lee,Soohyun Kim,Joonho Seon,Seongwoo Lee,Chanuk Kyeong,Jin‐Young Kim
出处
期刊:Energies [MDPI AG]
卷期号:16 (3): 1109-1109 被引量:4
标识
DOI:10.3390/en16031109
摘要

Energy theft causes a lot of economic losses every year. In the practical environment of energy theft detection, it is required to solve imbalanced data problem where normal user data are significantly larger than energy theft data. In this paper, a variational autoencoder-generative adversarial network (VAE-GAN)-based energy theft-detection model is proposed to overcome the imbalanced data problem. In the proposed model, the VAE-GAN generates synthetic energy theft data with the features of real energy theft data for augmenting the energy theft dataset. The obtained balanced dataset is applied to train a detector which is designed as one-dimensional convolutional neural network. The proposed model is simulated on the practical dataset for comparing with various generative models to evaluate their performance. From simulation results, it is confirmed that the proposed model outperforms the other existing models. Additionally, it is shown that the proposed model is also very useful in the environments of extreme data imbalance for a wide variety of applications by analyzing the performance of detector according to the balance rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
好好应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
好好应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
好好应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
dew应助科研通管家采纳,获得50
2秒前
FU发布了新的文献求助10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
好好应助科研通管家采纳,获得10
3秒前
xu应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
4秒前
路人发布了新的文献求助10
5秒前
5秒前
隐形曼青应助猪猪hero采纳,获得10
5秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716