亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the Performance of RODNet for MMW Radar Target Detection in Dense Pedestrian Scene

计算机科学 聚类分析 雷达 人工智能 目标检测 模式识别(心理学) 航程(航空) 卷积神经网络 计算机视觉 工程类 电信 航空航天工程
作者
Yang Li,Zhuang Li,Yanping Wang,Guangda Xie,Yun Lin,Wenjie Shen,Wen Jiang
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (2): 361-361 被引量:1
标识
DOI:10.3390/math11020361
摘要

In the field of autonomous driving, millimeter-wave (MMW) radar is often used as a supplement sensor of other types of sensors, such as optics, in severe weather conditions to provide target-detection services for autonomous driving. RODNet (A Real-Time Radar Object-Detection Network) is one of the most widely used MMW radar range–azimuth (RA) image sequence target-detection algorithms based on Convolutional Neural Networks (CNNs). However, RODNet adopts an object-location similarity (OLS) detection method that is independent of the number of targets to obtain the final target detections from the predicted confidence map. Therefore, it gives a poor performance on missed detection ratio in dense pedestrian scenes. Based on the analysis of the predicted confidence map distribution characteristics, we propose a new generative model-based target-location detection algorithm to improve the performance of RODNet in dense pedestrian scenes. The confidence value and space distribution predicted by RODNet are analyzed in this paper. It shows that the space distribution is more robust than the value distribution for clustering. This is useful in selecting a clustering method to estimate the clustering centers of multiple targets in close range under the effects of distributed target and radar measurement variance and multipath scattering. Another key idea of this algorithm is the derivation of a Gaussian Mixture Model with target number (GMM-TN) for generating the likelihood probability distributions of different target number assumptions. Furthermore, a minimum Kullback–Leibler (KL) divergence target number estimation scheme is proposed combined with K-means clustering and a GMM-TN model. Through the CRUW dataset, the target-detection experiment on a dense pedestrian scene is carried out, and the confidence distribution under typical hidden variable conditions is analyzed. The effectiveness of the improved algorithm is verified: the Average Precision (AP) is improved by 29% and the Average Recall (AR) is improved by 36%.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.2应助沐兮采纳,获得10
2秒前
心灵美的不斜完成签到 ,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
19秒前
20秒前
bgerivers发布了新的文献求助10
23秒前
安一发布了新的文献求助20
26秒前
bgerivers完成签到,获得积分10
28秒前
Bzh完成签到,获得积分10
30秒前
今后应助bgerivers采纳,获得10
33秒前
Zenia完成签到,获得积分10
35秒前
35秒前
沐兮发布了新的文献求助10
40秒前
Bzh关注了科研通微信公众号
44秒前
郑zheng完成签到 ,获得积分10
50秒前
无情的问枫完成签到 ,获得积分10
53秒前
111完成签到,获得积分10
1分钟前
沐兮完成签到 ,获得积分10
1分钟前
A_123完成签到,获得积分10
1分钟前
FashionBoy应助胸大无肌采纳,获得10
1分钟前
上官若男应助胸大无肌采纳,获得10
1分钟前
善学以致用应助胸大无肌采纳,获得10
1分钟前
无花果应助胸大无肌采纳,获得10
1分钟前
1分钟前
Owen应助胸大无肌采纳,获得10
1分钟前
Orange应助胸大无肌采纳,获得10
1分钟前
爆米花应助胸大无肌采纳,获得10
1分钟前
Ava应助胸大无肌采纳,获得10
1分钟前
Snow完成签到 ,获得积分10
1分钟前
LeiYu完成签到 ,获得积分10
1分钟前
帅气天荷完成签到 ,获得积分10
1分钟前
云子完成签到,获得积分10
1分钟前
啥时候吃火锅完成签到 ,获得积分0
1分钟前
钟钟完成签到,获得积分10
1分钟前
香蕉觅云应助绾颜采纳,获得10
1分钟前
xxx完成签到 ,获得积分10
2分钟前
zcz完成签到 ,获得积分10
2分钟前
小冯完成签到 ,获得积分10
2分钟前
华仔应助胸大无肌采纳,获得10
2分钟前
小蘑菇应助胸大无肌采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875612
求助须知:如何正确求助?哪些是违规求助? 6519070
关于积分的说明 15677388
捐赠科研通 4993580
什么是DOI,文献DOI怎么找? 2691573
邀请新用户注册赠送积分活动 1633815
关于科研通互助平台的介绍 1591471