Improving the Performance of RODNet for MMW Radar Target Detection in Dense Pedestrian Scene

计算机科学 聚类分析 雷达 人工智能 目标检测 模式识别(心理学) 航程(航空) 卷积神经网络 计算机视觉 工程类 电信 航空航天工程
作者
Yang Li,Zhuang Li,Yanping Wang,Guangda Xie,Yun Lin,Wenjie Shen,Wen Jiang
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (2): 361-361 被引量:1
标识
DOI:10.3390/math11020361
摘要

In the field of autonomous driving, millimeter-wave (MMW) radar is often used as a supplement sensor of other types of sensors, such as optics, in severe weather conditions to provide target-detection services for autonomous driving. RODNet (A Real-Time Radar Object-Detection Network) is one of the most widely used MMW radar range–azimuth (RA) image sequence target-detection algorithms based on Convolutional Neural Networks (CNNs). However, RODNet adopts an object-location similarity (OLS) detection method that is independent of the number of targets to obtain the final target detections from the predicted confidence map. Therefore, it gives a poor performance on missed detection ratio in dense pedestrian scenes. Based on the analysis of the predicted confidence map distribution characteristics, we propose a new generative model-based target-location detection algorithm to improve the performance of RODNet in dense pedestrian scenes. The confidence value and space distribution predicted by RODNet are analyzed in this paper. It shows that the space distribution is more robust than the value distribution for clustering. This is useful in selecting a clustering method to estimate the clustering centers of multiple targets in close range under the effects of distributed target and radar measurement variance and multipath scattering. Another key idea of this algorithm is the derivation of a Gaussian Mixture Model with target number (GMM-TN) for generating the likelihood probability distributions of different target number assumptions. Furthermore, a minimum Kullback–Leibler (KL) divergence target number estimation scheme is proposed combined with K-means clustering and a GMM-TN model. Through the CRUW dataset, the target-detection experiment on a dense pedestrian scene is carried out, and the confidence distribution under typical hidden variable conditions is analyzed. The effectiveness of the improved algorithm is verified: the Average Precision (AP) is improved by 29% and the Average Recall (AR) is improved by 36%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助皮皮采纳,获得30
1秒前
飞快的金鑫完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
风染墨色发布了新的文献求助20
4秒前
研友_LjbjzL完成签到,获得积分10
4秒前
4秒前
1234发布了新的文献求助10
6秒前
6秒前
奋斗的蜗牛完成签到 ,获得积分10
7秒前
南小琴发布了新的文献求助10
7秒前
Sekiro发布了新的文献求助10
8秒前
8秒前
spiritpope发布了新的文献求助10
8秒前
zsyzxb发布了新的文献求助10
9秒前
hai发布了新的文献求助10
9秒前
jujubemxw完成签到,获得积分10
9秒前
orixero应助爱听歌的艳采纳,获得10
10秒前
意意发布了新的文献求助10
10秒前
10秒前
10秒前
CarterXD发布了新的文献求助200
11秒前
11秒前
Sekiro完成签到,获得积分10
11秒前
12秒前
1234完成签到,获得积分10
13秒前
皮皮发布了新的文献求助30
15秒前
Kristal完成签到,获得积分10
15秒前
12341完成签到,获得积分10
15秒前
zsyzxb完成签到,获得积分20
16秒前
nonkul发布了新的文献求助10
16秒前
孟石三发布了新的文献求助10
17秒前
笨小孩完成签到,获得积分10
20秒前
AA发布了新的文献求助10
22秒前
23秒前
ctwcrew发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240