A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage

可解释性 计算机科学 人工智能
作者
Muhammad Usman Hadi,qasem al tashi,Rizwan Qureshi,Abbas Shah,Amgad Muneer,Muhammad Irfan,Anas Zafar,Muhammad Bilal Shaikh,Naveed Akhtar,Jia Wu,Seyedali Mirjalili
标识
DOI:10.36227/techrxiv.23589741.v1
摘要

<p>Within the vast expanse of computerized language processing, a revolutionary entity known as Large Language Models (LLMs) has emerged, wielding immense power in its capacity to comprehend intricate linguistic patterns and conjure coherent and contextually fitting responses. Large language models (LLMs) are a type of artificial intelligence (AI) that have emerged as powerful tools for a wide range of tasks, including natural language processing (NLP), machine translation, and question-answering. This survey paper provides a comprehensive overview of LLMs, including their history, architecture, training methods, applications, and challenges. The paper begins by discussing the fundamental concepts of generative AI and the architecture of generative pre- trained transformers (GPT). It then provides an overview of the history of LLMs, their evolution over time, and the different training methods that have been used to train them. The paper then discusses the wide range of applications of LLMs, including medical, education, finance, and engineering. It also discusses how LLMs are shaping the future of AI and how they can be used to solve real-world problems. The paper then discusses the challenges associated with deploying LLMs in real-world scenarios, including ethical considerations, model biases, interpretability, and computational resource requirements. It also highlights techniques for enhancing the robustness and controllability of LLMs, and addressing bias, fairness, and generation quality issues. Finally, the paper concludes by highlighting the future of LLM research and the challenges that need to be addressed in order to make LLMs more reliable and useful. This survey paper is intended to provide researchers, practitioners, and enthusiasts with a comprehensive understanding of LLMs, their evolution, applications, and challenges. By consolidating the state-of-the-art knowledge in the field, this survey serves as a valuable resource for further advancements in the development and utilization of LLMs for a wide range of real-world applications. The GitHub repo for this project is available at https://github.com/anas-zafar/LLM-Survey</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助1111采纳,获得10
刚刚
hiyayaya完成签到,获得积分20
2秒前
3秒前
3秒前
陈艺鹏完成签到,获得积分10
3秒前
3秒前
科研通AI5应助高兴的牛排采纳,获得10
3秒前
W1ll完成签到,获得积分10
4秒前
gudujian870928完成签到,获得积分10
5秒前
5秒前
一一应助顺利紫山采纳,获得10
5秒前
科研通AI2S应助爸爸采纳,获得10
5秒前
7秒前
8秒前
乐乐应助坦率大侠采纳,获得10
8秒前
清新的寄风完成签到 ,获得积分10
8秒前
乔冰安发布了新的文献求助10
8秒前
9秒前
YJ888发布了新的文献求助10
9秒前
大个应助know采纳,获得10
9秒前
10秒前
junmoxiao发布了新的文献求助10
10秒前
高兴的牛排完成签到,获得积分10
10秒前
施水蓝完成签到,获得积分10
12秒前
刻苦莫言发布了新的文献求助10
12秒前
bewithtaq发布了新的文献求助10
14秒前
14秒前
15秒前
Arueliano发布了新的文献求助10
15秒前
15秒前
17秒前
酷波er应助正直的学姐采纳,获得10
17秒前
18秒前
乐乐应助谨慎的访云采纳,获得10
19秒前
刚刚好发布了新的文献求助10
19秒前
DouBo完成签到,获得积分10
19秒前
bk发布了新的文献求助30
21秒前
哈哈发布了新的文献求助10
22秒前
know发布了新的文献求助10
22秒前
完美世界应助二掌柜采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752822
求助须知:如何正确求助?哪些是违规求助? 3296380
关于积分的说明 10093636
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809