Improvement of positive plate grid corrosion resistance through two methods of boric acid addition to lead-acid battery electrolyte

硼酸 腐蚀 铅酸蓄电池 电解质 化学 电极 材料科学 冶金 化学工程 电池(电) 有机化学 物理化学 功率(物理) 物理 量子力学 工程类
作者
A.F. Romero,Rafael Tomey,P. Ocón,Jesús Valenciano,H. Fricke
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108302-108302 被引量:5
标识
DOI:10.1016/j.est.2023.108302
摘要

The performance of Lead-Acid Batteries (LABs) can be enhanced by the approach of incorporation of additives. In this way, boric acid (H3BO3) has been studied as an electrolyte additive as prior investigations have done. Nevertheless, the innovation provided by this work is based on the addition method employed. In fact, the H3BO3 effect on the LAB performance was measured when the addition was performed before and after the LAB formation. Firstly, a previous study was carried out in a three electrode cell to understand the effect of this additive on the positive grid. As a result, a decrease in the oxide reduction charge (23 %) and an increase in the resistance of the corrosion process were found by the addition of 0.50 wt% H3BO3. Furthermore, the research was then extended to a LAB system. Thus, 2 V/1 Ah cells were built and H3BO3 was added in different concentrations before and after the cell formation. Consequently, different effects were showed by the two addition methodologies. When the additive was introduced before the cell formation, the Cold Cranking Ampere (CCA) performance was improved (26 %). In contrast, when the additive was incorporated after the formation procedure, the Oxygen Evolution Reaction (OER) rate on the positive plate was significantly reduced (75 %). Lastly, the corrosion growth in the positive plate grid was slowed by the two methods although in different ways: 20 % reduction after 42 days of corrosion process (addition before formation) and 12 % reduction after 21 days of corrosion process (addition after formation). In addition, the prior cell performances were affected by the addition methodologies. If the additive was added to the electrolyte before the cell formation, the positive plate performance was possibly altered by the formation and growth of boric compounds in the PAM. However the cell performance was influenced by the suppression of OER on the positive plate when H3BO3 was added after the cell formation. In this way, different nuances of improvement were obtained due to the addition method applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助阳光的梦寒采纳,获得10
刚刚
科研通AI6应助hoy采纳,获得10
1秒前
标致的幼菱完成签到,获得积分10
2秒前
失眠的香菇完成签到 ,获得积分10
3秒前
汉堡包应助专注的水壶采纳,获得10
4秒前
7秒前
8秒前
9秒前
Felix完成签到,获得积分10
10秒前
13秒前
BowieHuang应助paulmichael采纳,获得10
13秒前
15秒前
11发布了新的文献求助10
15秒前
搜集达人应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
unqiue应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
unqiue应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
小新应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Verity应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566