Forecasting landslides using community detection on geophysical satellite data

干涉合成孔径雷达 山崩 地质学 变形(气象学) 卫星 仰角(弹道) 蠕动 数字高程模型 合成孔径雷达 地震学 遥感 几何学 海洋学 工程类 航空航天工程 复合材料 数学 材料科学
作者
Vrinda Desai,Farnaz Fazelpour,Alexander L. Handwerger,Karen E. Daniels
出处
期刊:Physical review [American Physical Society]
卷期号:108 (1) 被引量:2
标识
DOI:10.1103/physreve.108.014901
摘要

As a result of extreme weather conditions, such as heavy precipitation, natural hillslopes can fail dramatically; these slope failures can occur on a dry day, due to time lags between rainfall and pore-water pressure change at depth, or even after days to years of slow motion. While the prefailure deformation is sometimes apparent in retrospect, it remains challenging to predict the sudden transition from gradual deformation (creep) to runaway failure. We use a network science method-multilayer modularity optimization-to investigate the spatiotemporal patterns of deformation in a region near the 2017 Mud Creek, California landslide. We transform satellite radar data from the study site into a spatially embedded network in which the nodes are patches of ground and the edges connect the nearest neighbors, with a series of layers representing consecutive transits of the satellite. Each edge is weighted by the product of the local slope (susceptibility to failure) measured from a digital elevation model and ground surface deformation (current rheological state) from interferometric synthetic aperture radar (InSAR). We use multilayer modularity optimization to identify strongly connected clusters of nodes (communities) and are able to identify both the location of Mud Creek and nearby creeping landslides which have not yet failed. We develop a metric, i.e., community persistence, to quantify patterns of ground deformation leading up to failure, and find that this metric increased from a baseline value in the weeks leading up to Mud Creek's failure. These methods hold promise as a technique for highlighting regions at risk of catastrophic failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
logic22完成签到,获得积分10
1秒前
XXXXH发布了新的文献求助10
1秒前
压缩机完成签到,获得积分10
1秒前
任大师兄发布了新的文献求助10
2秒前
2秒前
剑指东方是为谁应助raycee采纳,获得10
2秒前
5秒前
晏啊完成签到,获得积分10
5秒前
香蕉觅云应助Ultraviolet采纳,获得10
5秒前
迷你的菲鹰完成签到,获得积分10
6秒前
腼腆的寄凡完成签到,获得积分10
6秒前
lalalala发布了新的文献求助10
7秒前
Orange应助ch采纳,获得10
7秒前
8秒前
8秒前
大模型应助854fycchjh采纳,获得10
9秒前
风趣的小鸽子完成签到,获得积分10
10秒前
10秒前
11秒前
苏世发布了新的文献求助10
11秒前
Hypnos完成签到,获得积分10
11秒前
快乐棒棒糖完成签到,获得积分10
13秒前
潇洒雁梅发布了新的文献求助10
14秒前
夏天完成签到,获得积分10
15秒前
lan发布了新的文献求助10
15秒前
咬经受搓狐臭空调完成签到,获得积分10
16秒前
研究牲完成签到,获得积分10
16秒前
16秒前
17秒前
JamesPei应助立秋呀采纳,获得10
18秒前
control完成签到,获得积分10
19秒前
19秒前
蓝桉完成签到,获得积分10
20秒前
无敌的番茄炒蛋应助对于采纳,获得20
21秒前
ding应助平淡雅霜采纳,获得10
21秒前
22秒前
ch发布了新的文献求助30
22秒前
23秒前
hhhhyhhh完成签到,获得积分10
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794