A fusion approach to infrared and visible images with Gabor filter and sigmoid function

图像融合 人工智能 可见光谱 计算机视觉 红外线的 滤波器(信号处理) 乙状窦函数 计算机科学 模式识别(心理学) 光学 图像(数学) 物理 人工神经网络
作者
Rongjun Zhong,Yun Fu,Yansong Song,Chunxiao Han
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:131: 104696-104696 被引量:7
标识
DOI:10.1016/j.infrared.2023.104696
摘要

The fusion of infrared (IR) and visible images should not only increase the brightness of the infrared targets, but also preserve more details in visible images. A fusion approach to infrared and visible images with Gabor filter and sigmoid function is proposed in this paper. In order to make targets prominent in the fused image, the IR image is normalized by the sigmoid function to get a mapping matrix W, and then the visible image is enhanced by the matrix W to obtain an enhanced visible image, so that the contrast between the target and the background in the visible image is enhanced. After the decomposition of the IR image, the visible image and the enhanced visible image with Gabor filter, the detail layers of the visible image and the enhanced visible image are fused using the “max-absolute” rule, and the base layers are fused using the rule of weighted summation, which greatly increases the amount of information in the visible image. The weighted summation is calculated for the basic layers of the infrared and fused visible image, and the absolute maximum value is calculated for their detail layers. Finally, the fused image is generated by a linear combination of the final detail layer and the final base layer. Nine existing algorithms with better performance and the algorithm proposed in this paper are tested on public datasets, and use six evaluation metrics such as average gradient (AG), cross entropy (CE), edge gradient (EI), information entropy (IE), peak signal-to-noise ratio (PSNR) and spatial frequency (SF) to evaluate the quality of the fused image. Experiments show that the new algorithm has achieved better visual effects, and most of the objective evaluation metrics are also better than other algorithms. In particular, the low-light image is enhanced by the sigmoid function and then fused, so that the fused image is clearer and the target is more prominent. The gradient information is retained in the fused image as much as possible. All these prove the advantage and effectiveness of the new algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐发布了新的文献求助10
1秒前
铸一字错发布了新的文献求助10
1秒前
受伤书文完成签到,获得积分10
2秒前
Yvonne发布了新的文献求助10
2秒前
2秒前
温柔的十三完成签到,获得积分10
2秒前
Ll发布了新的文献求助10
3秒前
nikai发布了新的文献求助10
3秒前
圣晟胜发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Leif应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
shouyu29应助科研通管家采纳,获得10
4秒前
4秒前
小金应助科研通管家采纳,获得20
4秒前
牛逼的昂完成签到,获得积分10
4秒前
muzi给muzi的求助进行了留言
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
yuhang完成签到 ,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
果汁完成签到,获得积分10
5秒前
NexusExplorer应助Zoe采纳,获得10
5秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
领导范儿应助junzilan采纳,获得10
7秒前
打打应助激动的一手采纳,获得10
7秒前
酷波er应助艺玲采纳,获得10
8秒前
longtengfei发布了新的文献求助10
8秒前
9秒前
9秒前
ZL发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759