A fusion approach to infrared and visible images with Gabor filter and sigmoid function

图像融合 人工智能 可见光谱 计算机视觉 红外线的 滤波器(信号处理) 乙状窦函数 计算机科学 模式识别(心理学) 光学 图像(数学) 物理 人工神经网络
作者
Rongjun Zhong,Yun Fu,Yansong Song,Chunxiao Han
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:131: 104696-104696 被引量:7
标识
DOI:10.1016/j.infrared.2023.104696
摘要

The fusion of infrared (IR) and visible images should not only increase the brightness of the infrared targets, but also preserve more details in visible images. A fusion approach to infrared and visible images with Gabor filter and sigmoid function is proposed in this paper. In order to make targets prominent in the fused image, the IR image is normalized by the sigmoid function to get a mapping matrix W, and then the visible image is enhanced by the matrix W to obtain an enhanced visible image, so that the contrast between the target and the background in the visible image is enhanced. After the decomposition of the IR image, the visible image and the enhanced visible image with Gabor filter, the detail layers of the visible image and the enhanced visible image are fused using the “max-absolute” rule, and the base layers are fused using the rule of weighted summation, which greatly increases the amount of information in the visible image. The weighted summation is calculated for the basic layers of the infrared and fused visible image, and the absolute maximum value is calculated for their detail layers. Finally, the fused image is generated by a linear combination of the final detail layer and the final base layer. Nine existing algorithms with better performance and the algorithm proposed in this paper are tested on public datasets, and use six evaluation metrics such as average gradient (AG), cross entropy (CE), edge gradient (EI), information entropy (IE), peak signal-to-noise ratio (PSNR) and spatial frequency (SF) to evaluate the quality of the fused image. Experiments show that the new algorithm has achieved better visual effects, and most of the objective evaluation metrics are also better than other algorithms. In particular, the low-light image is enhanced by the sigmoid function and then fused, so that the fused image is clearer and the target is more prominent. The gradient information is retained in the fused image as much as possible. All these prove the advantage and effectiveness of the new algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助上好佳采纳,获得10
1秒前
阿飘应助w2503采纳,获得10
1秒前
3秒前
张铭杰完成签到,获得积分20
3秒前
大泓淇发布了新的文献求助10
3秒前
汉堡包应助醉熏的恋风采纳,获得10
5秒前
Polly完成签到,获得积分10
5秒前
ding应助板栗采纳,获得10
6秒前
Xuech完成签到,获得积分10
7秒前
铜眼科发布了新的文献求助10
7秒前
jwx完成签到,获得积分10
7秒前
KingYH完成签到,获得积分10
7秒前
er2222发布了新的文献求助10
8秒前
ding应助风情万种老村长采纳,获得10
8秒前
璇222完成签到,获得积分20
9秒前
科研通AI2S应助怕黑的文具采纳,获得10
9秒前
zzjiay完成签到,获得积分10
10秒前
丘比特应助假面采纳,获得10
10秒前
10秒前
Orange应助璇222采纳,获得10
13秒前
内向芒果完成签到,获得积分10
13秒前
ldx发布了新的文献求助10
14秒前
14秒前
18秒前
充电宝应助Messi采纳,获得10
19秒前
Jasper应助lx采纳,获得10
19秒前
hgh完成签到,获得积分10
20秒前
光亮的自行车完成签到 ,获得积分10
21秒前
赘婿应助蟹xie采纳,获得10
21秒前
iNk应助ldx采纳,获得10
21秒前
七院应助明亮静芙采纳,获得30
24秒前
24秒前
李健的小迷弟应助木木采纳,获得10
27秒前
pp发布了新的文献求助10
28秒前
walongjushi完成签到 ,获得积分10
28秒前
Isaac完成签到,获得积分10
28秒前
29秒前
30秒前
hongzhou完成签到,获得积分10
30秒前
muyingleng举报哈哈求助涉嫌违规
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503