A fusion approach to infrared and visible images with Gabor filter and sigmoid function

图像融合 人工智能 可见光谱 计算机视觉 红外线的 滤波器(信号处理) 乙状窦函数 计算机科学 模式识别(心理学) 光学 图像(数学) 物理 人工神经网络
作者
Rongjun Zhong,Yun Fu,Yansong Song,Chunxiao Han
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:131: 104696-104696 被引量:7
标识
DOI:10.1016/j.infrared.2023.104696
摘要

The fusion of infrared (IR) and visible images should not only increase the brightness of the infrared targets, but also preserve more details in visible images. A fusion approach to infrared and visible images with Gabor filter and sigmoid function is proposed in this paper. In order to make targets prominent in the fused image, the IR image is normalized by the sigmoid function to get a mapping matrix W, and then the visible image is enhanced by the matrix W to obtain an enhanced visible image, so that the contrast between the target and the background in the visible image is enhanced. After the decomposition of the IR image, the visible image and the enhanced visible image with Gabor filter, the detail layers of the visible image and the enhanced visible image are fused using the “max-absolute” rule, and the base layers are fused using the rule of weighted summation, which greatly increases the amount of information in the visible image. The weighted summation is calculated for the basic layers of the infrared and fused visible image, and the absolute maximum value is calculated for their detail layers. Finally, the fused image is generated by a linear combination of the final detail layer and the final base layer. Nine existing algorithms with better performance and the algorithm proposed in this paper are tested on public datasets, and use six evaluation metrics such as average gradient (AG), cross entropy (CE), edge gradient (EI), information entropy (IE), peak signal-to-noise ratio (PSNR) and spatial frequency (SF) to evaluate the quality of the fused image. Experiments show that the new algorithm has achieved better visual effects, and most of the objective evaluation metrics are also better than other algorithms. In particular, the low-light image is enhanced by the sigmoid function and then fused, so that the fused image is clearer and the target is more prominent. The gradient information is retained in the fused image as much as possible. All these prove the advantage and effectiveness of the new algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的成协完成签到 ,获得积分10
1秒前
兜兜窦发布了新的文献求助30
1秒前
Sylvia0528发布了新的文献求助10
1秒前
李健的粉丝团团长应助lzh采纳,获得10
1秒前
爆米花应助wangji_2017采纳,获得10
2秒前
qq发布了新的文献求助10
2秒前
张润泽发布了新的文献求助10
2秒前
小怪兽发布了新的文献求助10
3秒前
无限的绮晴完成签到,获得积分10
3秒前
孙福禄应助深情的迎海采纳,获得10
3秒前
朱w完成签到,获得积分10
3秒前
Rachel发布了新的文献求助10
3秒前
深情安青应助东方采纳,获得10
3秒前
云生雾霭完成签到,获得积分10
4秒前
4秒前
隐形曼青应助erhan7采纳,获得10
4秒前
可爱的函函应助孙刚采纳,获得10
4秒前
linyuiz关注了科研通微信公众号
4秒前
客官们帮帮忙完成签到,获得积分10
5秒前
zhaoyang完成签到 ,获得积分10
5秒前
暖冬22完成签到,获得积分10
6秒前
大力老木关注了科研通微信公众号
6秒前
星辰大海应助ZJJ采纳,获得10
7秒前
Rubby应助慕慕倾采纳,获得10
7秒前
7秒前
DWF完成签到,获得积分20
8秒前
叶舟完成签到,获得积分10
8秒前
Kingcrimson发布了新的文献求助10
8秒前
Natforever完成签到 ,获得积分10
8秒前
刘晓宇完成签到,获得积分10
8秒前
9秒前
alverine完成签到,获得积分10
9秒前
Wind发布了新的文献求助10
9秒前
10秒前
月下荷花发布了新的文献求助10
10秒前
郭达仲完成签到 ,获得积分10
11秒前
花开的声音1217完成签到,获得积分10
12秒前
孙福禄应助mrz采纳,获得10
12秒前
开心蘑菇应助Natforever采纳,获得10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635