兰克尔
破骨细胞
骨吸收
骨质疏松症
内分泌学
化学
骨重建
内科学
去卵巢大鼠
成骨细胞
癌症研究
细胞生物学
医学
激活剂(遗传学)
生物
生物化学
体外
受体
雌激素
作者
Yuxin Wang,Xiang Li,Shengji Zhou,Jiarui Li,Yi Zhu,Quan Wang,Fengchao Zhao
摘要
Osteoporosis is a disorder of bone metabolism that is extremely common in elderly patients as well as in postmenopausal women. The main manifestation is that the bone resorption capacity is greater than the bone formation capacity, which eventually leads to a decrease in bone mass, increasing the risk of fracture. There is growing evidence that inhibiting osteoclast formation and resorption ability can be effective in treating and preventing the occurrence of osteoporosis. Our study is the first time to explore the role of the mitochondrial calcium uniporter (MCU) and its inhibitor ruthenium red (RR) in bone metabolism, clarifying the specific mechanism by which it inhibits osteoclast formation in vitro and plays a therapeutic role in osteoporosis in vivo. We verified the suppressive effects of RR on the receptor activator of nuclear factor-κB ligand (RANKL-)-induced differentiation and bone resorption function of osteoclasts in vitro. The reactive oxygen species (ROS) production stimulated by RANKL and the expression level of P38 MAPK/NFATc1 were also found to be inhibited by RR. Moreover, the promotion of RR on osteogenesis differentiation was investigated by alkaline phosphatase (ALP) and alizarin red S (ARS) staining and the detection of osteogenesis-specific gene expression levels by quantitative polymerase chain reaction (qPCR) and western blotting. Moreover, in ovariectomy (OVX-)-induced osteoporosis models, RR can downregulate the expression and function of the MCU, relieving bone loss and promoting osteogenesis to present a therapeutic effect on osteoporosis. This new finding will provide an important direction for the study of RR and MCU in the study of bone metabolism therapy targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI