过程性
糖苷水解酶
蛋白质工程
化学
色氨酸
水解酶
水解
生物化学
立体化学
突变
定向进化
突变体
生物物理学
酶动力学
饱和突变
催化作用
同源建模
酶
活动站点
生物
氨基酸
聚合酶
基因
作者
Sukanya Luang,Xavier F. Fernandez-Luengo,Alba Nin‐Hill,V.A. Streltsov,Julian G. Schwerdt,Santiago Alonso-Gil,James R. Ketudat Cairns,Stéphanie Pradeau,Sébastien Fort,Jean‐Didier Maréchal,Laura Masgrau,Carme Rovira,Mária Hrmová
标识
DOI:10.1038/s41467-022-33180-5
摘要
Abstract In the barley β- d -glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures β- d -glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric β- d -glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-β- d -glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI