Density peaks clustering based on balance density and connectivity

聚类分析 模式识别(心理学) 计算机科学 平衡(能力) 数据挖掘 人工智能 医学 物理医学与康复
作者
Qinghua Zhang,Yongyang Dai,Guoyin Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109052-109052 被引量:11
标识
DOI:10.1016/j.patcog.2022.109052
摘要

Density peaks clustering (DPC) algorithm regards the density peaks as the potential cluster centers, and assigns the non-center point into the cluster of its nearest higher-density neighbor. Although DPC can discover clusters with arbitrary shapes, it has some limitations. On the one hand, the density measure of DPC fails to eliminate the density difference among different clusters, which affects the accuracy of recognizing cluster center. On the other hand, the nearest higher-density point is determined without considering connectivity, which leads to continuously clustering errors. Therefore, DPC fails to obtain satisfactory clustering results on datasets with great density difference among clusters. In order to eliminate these limitations, a novel DPC algorithm based on balance density and connectivity (BC-DPC) is proposed. First, the balance density is proposed to eliminate the density difference among different clusters to accurately recognize cluster centers. Second, the connectivity between a data point and its nearest higher-density point is guaranteed by mutual nearest neighbor relationship to avoid continuously clustering errors. Finally, a fast search strategy is proposed to find the nearest higher-density point. The experimental results on synthetic, UCI, and image datasets demonstrate the efficiency and effectiveness of the proposed algorithm in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkk发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
1秒前
顺心灵寒发布了新的文献求助10
2秒前
科研通AI2S应助甜甜的以筠采纳,获得10
4秒前
李健的小迷弟应助JL采纳,获得10
5秒前
wwz应助多情的白山采纳,获得10
5秒前
顾初安完成签到,获得积分10
5秒前
开朗的踏歌完成签到,获得积分10
6秒前
chenxxx发布了新的文献求助10
6秒前
无情的盼兰完成签到,获得积分10
6秒前
7秒前
yan发布了新的文献求助30
8秒前
顺心灵寒完成签到,获得积分10
8秒前
Daisy完成签到,获得积分10
8秒前
Cope完成签到 ,获得积分10
9秒前
10秒前
10秒前
wyg1994发布了新的文献求助50
11秒前
猫不吃狗粮完成签到,获得积分10
11秒前
zincw完成签到,获得积分10
13秒前
16秒前
今后应助Alexander L采纳,获得10
16秒前
孤独的狼完成签到,获得积分10
17秒前
17秒前
小西米完成签到,获得积分10
18秒前
今后应助lee采纳,获得10
20秒前
Tizzy完成签到,获得积分10
20秒前
百里酚蓝完成签到 ,获得积分10
21秒前
诗酒发布了新的文献求助10
21秒前
在水一方应助碎月采纳,获得10
22秒前
今日不再蛇皇应助一叶采纳,获得20
22秒前
飞蝗的life完成签到,获得积分20
23秒前
25秒前
飞蝗的life发布了新的文献求助10
26秒前
姚琳发布了新的文献求助10
26秒前
27秒前
goodesBright应助火星上绮采纳,获得30
27秒前
Orange应助Annie采纳,获得10
30秒前
老实幻枫关注了科研通微信公众号
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458