Data-driven based phase constitution prediction in high entropy alloys

高熵合金 宪法 材料科学 统计物理学 热力学 计算机科学 微观结构 冶金 物理 政治学 法学
作者
Qi‐Nan Han,Zhanglun Lu,Siyu Zhao,Yue Su,Haitao Cui
出处
期刊:Computational Materials Science [Elsevier]
卷期号:215: 111774-111774 被引量:13
标识
DOI:10.1016/j.commatsci.2022.111774
摘要

High entropy alloys (HEAs) have attracted increasing research because of their excellent material properties and near-infinite design space. Developing effective phase composition prediction method is important for novel HEA design. Machine learning (ML) as an efficient data-driven approach provides a possible method for the phase prediction of HEAs, however, there is a lack of clarification of effectiveness and difference of various ML models. In this paper, more than 800 HEAs phase data were collected and 16 characteristic features were summarized. A variety of ML models were used to train and predict the phase composition. The results showed ensemble learning represented by XGBoost and Random Forest achieved higher prediction accuracy than other traditional ML models. The effectiveness of feature for training model was validated, and Principal Components Analysis method was used to reduce feature dimensions without loss of accuracy. The effectiveness and difference of ML models were explored with decision boundary comparison. The developed ML models in this paper can be applied in the phase prediction of novel HEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
JG完成签到 ,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得20
4秒前
orixero应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
拉长的博超完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
7秒前
爆米花应助春江采纳,获得10
8秒前
在水一方应助treelet007采纳,获得10
8秒前
8秒前
8秒前
xuxingxing发布了新的文献求助10
9秒前
9秒前
10秒前
庄艺斌完成签到,获得积分10
10秒前
10秒前
11秒前
传奇3应助微光熠采纳,获得10
11秒前
聪明邪欢完成签到,获得积分10
12秒前
科目三应助misaka采纳,获得10
13秒前
13秒前
神音发布了新的文献求助10
13秒前
左西发布了新的文献求助10
13秒前
吴彦祖发布了新的文献求助10
14秒前
瞌睡虫发布了新的文献求助10
15秒前
烟花应助一一采纳,获得30
15秒前
16秒前
xxfsx应助zhe采纳,获得10
16秒前
77发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431238
求助须知:如何正确求助?哪些是违规求助? 4544308
关于积分的说明 14191949
捐赠科研通 4463001
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414720