Data-driven based phase constitution prediction in high entropy alloys

高熵合金 宪法 材料科学 统计物理学 热力学 计算机科学 微观结构 冶金 物理 政治学 法学
作者
Qi‐Nan Han,Zhanglun Lu,Siyu Zhao,Yue Su,Haitao Cui
出处
期刊:Computational Materials Science [Elsevier]
卷期号:215: 111774-111774 被引量:13
标识
DOI:10.1016/j.commatsci.2022.111774
摘要

High entropy alloys (HEAs) have attracted increasing research because of their excellent material properties and near-infinite design space. Developing effective phase composition prediction method is important for novel HEA design. Machine learning (ML) as an efficient data-driven approach provides a possible method for the phase prediction of HEAs, however, there is a lack of clarification of effectiveness and difference of various ML models. In this paper, more than 800 HEAs phase data were collected and 16 characteristic features were summarized. A variety of ML models were used to train and predict the phase composition. The results showed ensemble learning represented by XGBoost and Random Forest achieved higher prediction accuracy than other traditional ML models. The effectiveness of feature for training model was validated, and Principal Components Analysis method was used to reduce feature dimensions without loss of accuracy. The effectiveness and difference of ML models were explored with decision boundary comparison. The developed ML models in this paper can be applied in the phase prediction of novel HEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
司徒文青应助Mid采纳,获得30
2秒前
华仔应助李秋静采纳,获得10
2秒前
buno应助大脸妹采纳,获得10
2秒前
Owen应助喵酱采纳,获得30
2秒前
胖豆发布了新的文献求助10
2秒前
今后应助科研小白菜采纳,获得10
3秒前
orixero应助欢呼的明雪采纳,获得10
3秒前
4秒前
my完成签到 ,获得积分10
5秒前
duxinyue完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI5应助斯文芷荷采纳,获得10
6秒前
7秒前
2鱼发布了新的文献求助10
8秒前
SYLH应助畅快的谷梦采纳,获得10
9秒前
mingjie发布了新的文献求助10
9秒前
Akim应助克里斯就是逊啦采纳,获得10
9秒前
越幸运完成签到 ,获得积分10
10秒前
young完成签到 ,获得积分10
10秒前
天天快乐应助成就的烧鹅采纳,获得10
11秒前
cora发布了新的文献求助10
11秒前
诚心的不斜完成签到,获得积分10
12秒前
bono完成签到 ,获得积分10
12秒前
12秒前
13秒前
又要起名字关注了科研通微信公众号
14秒前
可爱的函函应助su采纳,获得10
14秒前
15秒前
澳澳完成签到,获得积分10
16秒前
16秒前
善学以致用应助纯真抽屉采纳,获得10
17秒前
17秒前
笑笑发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
Hello应助cora采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794