Machine learning predicts the prognosis of breast cancer patients with initial bone metastases

医学 乳腺癌 内科学 肿瘤科 比例危险模型 骨转移 倾向得分匹配 化疗 阶段(地层学) 生存分析 癌症 外科 生物 古生物学
作者
Chaofan Li,Mengjie Liu,Jia Li,Weiwei Wang,Cong Feng,Yifan Cai,Fei Wu,Xixi Zhao,Chong Du,Yinbin Zhang,Yusheng Wang,Shuqun Zhang,Jingkun Qu
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:10 被引量:2
标识
DOI:10.3389/fpubh.2022.1003976
摘要

Bone is the most common metastatic site of patients with advanced breast cancer and the survival time is their primary concern; however, we lack accurate predictive models in clinical practice. In addition to this, primary surgery for breast cancer patients with bone metastases is still controversial.The data used for analysis in this study were obtained from the SEER database (2010-2019). We made a COX regression analysis to identify prognostic factors of patients with bone metastatic breast cancer (BMBC). Through cross-validation, we constructed an XGBoost model to predicting survival in patients with BMBC. We also investigated the prognosis of patients treated with neoadjuvant chemotherapy plus surgical and chemotherapy alone using propensity score matching and K-M survival analysis.Our validation results showed that the model has high sensitivity, specificity, and correctness, and it is the most accurate one to predict the survival of patients with BMBC (1-year AUC = 0.818, 3-year AUC = 0.798, and 5-year survival AUC = 0.791). The sensitivity of the 1-year model was higher (0.79), while the specificity of the 5-year model was higher (0.86). Interestingly, we found that if the time from diagnosis to therapy was ≥1 month, patients with BMBC had even better survival than those who started treatment immediately (HR = 0.920, 95%CI 0.869-0.974, P < 0.01). The BMBC patients with an income of more than USD$70,000 had better OS (HR = 0.814, 95%CI 0.745-0.890, P < 0.001) and BCSS (HR = 0.808 95%CI 0.735-0.889, P < 0.001) than who with income of < USD$50,000. We also found that compared with chemotherapy alone, neoadjuvant chemotherapy plus surgical treatment significantly improved OS and BCSS in all molecular subtypes of patients with BMBC, while only the patients with bone metastases only, bone and liver metastases, bone and lung metastases could benefit from neoadjuvant chemotherapy plus surgical treatment.We constructed an AI model to provide a quantitative method to predict the survival of patients with BMBC, and our validation results indicate that this model should be highly reproducible in a similar patient population. We also identified potential prognostic factors for patients with BMBC and suggested that primary surgery followed by neoadjuvant chemotherapy might increase survival in a selected subgroup of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨翰发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
2秒前
yk发布了新的文献求助10
4秒前
djiwisksk66应助886采纳,获得10
4秒前
712完成签到,获得积分10
5秒前
杳鸢应助zhang采纳,获得10
5秒前
CodeCraft应助越战越勇采纳,获得10
5秒前
搞怪人杰完成签到,获得积分10
5秒前
juzipi完成签到,获得积分10
5秒前
wyy应助科研通管家采纳,获得50
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得200
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
yx_cheng应助科研通管家采纳,获得10
8秒前
8秒前
jellyfish完成签到,获得积分10
9秒前
9秒前
虚心谷梦完成签到,获得积分10
10秒前
星辰大海应助迅速的雁山采纳,获得10
10秒前
shelemi发布了新的文献求助10
10秒前
11秒前
11秒前
Tianling完成签到,获得积分0
11秒前
12秒前
12秒前
13秒前
13秒前
14秒前
luiii发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993