Machine learning predicts the prognosis of breast cancer patients with initial bone metastases

医学 乳腺癌 内科学 肿瘤科 比例危险模型 骨转移 倾向得分匹配 化疗 阶段(地层学) 生存分析 癌症 外科 生物 古生物学
作者
Chaofan Li,Mengjie Liu,Jia Li,Weiwei Wang,Cong Feng,Yifan Cai,Fei Wu,Xixi Zhao,Chong Du,Yinbin Zhang,Yusheng Wang,Shuqun Zhang,Jingkun Qu
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:2
标识
DOI:10.3389/fpubh.2022.1003976
摘要

Bone is the most common metastatic site of patients with advanced breast cancer and the survival time is their primary concern; however, we lack accurate predictive models in clinical practice. In addition to this, primary surgery for breast cancer patients with bone metastases is still controversial.The data used for analysis in this study were obtained from the SEER database (2010-2019). We made a COX regression analysis to identify prognostic factors of patients with bone metastatic breast cancer (BMBC). Through cross-validation, we constructed an XGBoost model to predicting survival in patients with BMBC. We also investigated the prognosis of patients treated with neoadjuvant chemotherapy plus surgical and chemotherapy alone using propensity score matching and K-M survival analysis.Our validation results showed that the model has high sensitivity, specificity, and correctness, and it is the most accurate one to predict the survival of patients with BMBC (1-year AUC = 0.818, 3-year AUC = 0.798, and 5-year survival AUC = 0.791). The sensitivity of the 1-year model was higher (0.79), while the specificity of the 5-year model was higher (0.86). Interestingly, we found that if the time from diagnosis to therapy was ≥1 month, patients with BMBC had even better survival than those who started treatment immediately (HR = 0.920, 95%CI 0.869-0.974, P < 0.01). The BMBC patients with an income of more than USD$70,000 had better OS (HR = 0.814, 95%CI 0.745-0.890, P < 0.001) and BCSS (HR = 0.808 95%CI 0.735-0.889, P < 0.001) than who with income of < USD$50,000. We also found that compared with chemotherapy alone, neoadjuvant chemotherapy plus surgical treatment significantly improved OS and BCSS in all molecular subtypes of patients with BMBC, while only the patients with bone metastases only, bone and liver metastases, bone and lung metastases could benefit from neoadjuvant chemotherapy plus surgical treatment.We constructed an AI model to provide a quantitative method to predict the survival of patients with BMBC, and our validation results indicate that this model should be highly reproducible in a similar patient population. We also identified potential prognostic factors for patients with BMBC and suggested that primary surgery followed by neoadjuvant chemotherapy might increase survival in a selected subgroup of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳善良的胖蜜蜂完成签到,获得积分10
2秒前
netyouxiang完成签到,获得积分10
3秒前
大雄的梦想是什么完成签到 ,获得积分10
8秒前
大乐完成签到 ,获得积分10
8秒前
晚晚完成签到 ,获得积分10
10秒前
可可可可汁完成签到 ,获得积分10
10秒前
产电菌菌主完成签到,获得积分10
12秒前
三金完成签到 ,获得积分10
13秒前
Emily完成签到 ,获得积分10
15秒前
Tina完成签到 ,获得积分10
16秒前
小于完成签到,获得积分10
18秒前
冯哒哒完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
21秒前
666完成签到,获得积分10
23秒前
zhangzhangzhang完成签到 ,获得积分10
25秒前
武雨珍完成签到,获得积分10
25秒前
甜蜜的海瑶完成签到 ,获得积分10
26秒前
xhh完成签到 ,获得积分10
30秒前
忐忑的草丛完成签到,获得积分10
30秒前
hyan完成签到 ,获得积分10
31秒前
宋江他大表哥完成签到,获得积分10
31秒前
666发布了新的文献求助10
33秒前
37秒前
大王完成签到 ,获得积分10
40秒前
风筝与亭发布了新的文献求助10
42秒前
xiaoputaor完成签到 ,获得积分10
45秒前
行者+完成签到,获得积分10
45秒前
小龙发布了新的文献求助10
48秒前
积极的雨完成签到 ,获得积分10
50秒前
无一完成签到 ,获得积分10
53秒前
54秒前
pacify完成签到 ,获得积分10
55秒前
薛洁洁完成签到 ,获得积分10
56秒前
三石完成签到 ,获得积分10
56秒前
zokor完成签到 ,获得积分10
56秒前
小龙完成签到,获得积分10
57秒前
zhangjfan发布了新的文献求助10
59秒前
TobyGarfielD完成签到 ,获得积分10
1分钟前
运敬完成签到 ,获得积分10
1分钟前
YJH完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865951
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862