已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-learning with region-level radiomic and dosimetric features for predicting radiotherapy-induced rectal toxicities in prostate cancer patients

医学 直肠炎 前列腺癌 放射治疗 放射性直肠炎 直肠 放射治疗计划 核医学 放射科 结直肠癌 剂量学 前列腺 癌症 内科学 疾病 溃疡性结肠炎
作者
Zhuolin Yang,David J Noble,Leila Shelley,Thomas Berger,Raj Jena,Duncan B McLaren,Neil G Burnet,William H Nailon
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:183: 109593-109593
标识
DOI:10.1016/j.radonc.2023.109593
摘要

This study aims to build machine learning models to predict radiation-induced rectal toxicities for three clinical endpoints and explore whether the inclusion of radiomic features calculated on radiotherapy planning computerised tomography (CT) scans combined with dosimetric features can enhance the prediction performance.183 patients recruited to the VoxTox study (UK-CRN-ID-13716) were included. Toxicity scores were prospectively collected after 2 years with grade ≥ 1 proctitis, haemorrhage (CTCAEv4.03); and gastrointestinal (GI) toxicity (RTOG) recorded as the endpoints of interest. The rectal wall on each slice was divided into 4 regions according to the centroid, and all slices were divided into 4 sections to calculate region-level radiomic and dosimetric features. The patients were split into a training set (75%, N = 137) and a test set (25%, N = 46). Highly correlated features were removed using four feature selection methods. Individual radiomic or dosimetric or combined (radiomic + dosimetric) features were subsequently classified using three machine learning classifiers to explore their association with these radiation-induced rectal toxicities.The test set area under the curve (AUC) values were 0.549, 0.741 and 0.669 for proctitis, haemorrhage and GI toxicity prediction using radiomic combined with dosimetric features. The AUC value reached 0.747 for the ensembled radiomic-dosimetric model for haemorrhage.Our preliminary results show that region-level pre-treatment planning CT radiomic features have the potential to predict radiation-induced rectal toxicities for prostate cancer. Moreover, when combined with region-level dosimetric features and using ensemble learning, the model prediction performance slightly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
方远锋完成签到,获得积分10
5秒前
光亮的树叶完成签到,获得积分10
5秒前
5秒前
Clancy完成签到,获得积分20
5秒前
5秒前
6秒前
benhzh发布了新的文献求助10
9秒前
9秒前
wyq发布了新的文献求助10
10秒前
狗贼完成签到,获得积分20
10秒前
11秒前
小马甲应助粥粥叭叭采纳,获得10
13秒前
14秒前
15秒前
CipherSage应助zj-3333333采纳,获得10
16秒前
16秒前
王大锤完成签到,获得积分10
17秒前
Leif举报KK求助涉嫌违规
18秒前
传奇3应助yuyu采纳,获得10
19秒前
21秒前
Jasper应助金水采纳,获得10
22秒前
duang完成签到,获得积分10
22秒前
23秒前
永毅完成签到 ,获得积分10
23秒前
星辰大海应助阳仔采纳,获得10
26秒前
Leif举报123求助涉嫌违规
27秒前
勤恳寒安发布了新的文献求助10
28秒前
化龙完成签到,获得积分10
31秒前
一堃发布了新的文献求助10
31秒前
33秒前
36秒前
xiaokang123应助科研通管家采纳,获得10
36秒前
研友_VZG7GZ应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得30
36秒前
orixero应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
shi hui应助科研通管家采纳,获得10
36秒前
FIN应助科研通管家采纳,获得20
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574821
求助须知:如何正确求助?哪些是违规求助? 3144723
关于积分的说明 9457157
捐赠科研通 2846017
什么是DOI,文献DOI怎么找? 1564665
邀请新用户注册赠送积分活动 732433
科研通“疑难数据库(出版商)”最低求助积分说明 719110