A Machine Learning-Based Classification Method for Monitoring Alzheimer’s Disease Using Electromagnetic Radar Data

人工智能 计算机科学 自编码 神经影像学 机器学习 特征提取 深度学习 人工神经网络 特征(语言学) 医学 语言学 哲学 精神科
作者
Rahmat Ullah,Yinhuan Dong,Tughrul Arslan,Siddharthan Chandran
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:71 (9): 4012-4026 被引量:6
标识
DOI:10.1109/tmtt.2023.3245665
摘要

Alzheimer’s and Parkinson’s diseases are two neurodegenerative brain disorders affecting more than 50 million people globally. Early diagnosis and appropriate assessment of disease progression are critical for treatment and improving patients’ health. Currently, the diagnosis of these neurodegenerative diseases is based primarily on mental status exams and neuroimaging scans, which are costly, time-consuming, and sometimes erroneous. Novel, cost-effective, and precise diagnostic tools and techniques are, thus, urgently required, particularly for early detection and prediction. In the recent decade, electromagnetic imaging has evolved as a cost-effective and noninvasive alternative approach for studying brain diseases. These studies focus on wearable and portable devices and imaging algorithms. However, microwave imaging cannot detect minimal changes in the brain at early stages accurately due to its lower resolution. This article investigates machine learning (ML) techniques for the early diagnosis of acute neurological diseases, especially Alzheimer’s disease (AD). A machine-learning-based classification method is proposed. Simulations are performed on realistic numerical brain phantoms using the CST studio suite to get the scattered signals. A novel data augmentation method is proposed to generate synthetic data required for ML algorithms. A deep neural network-based autoencoder extracts features to train various ML algorithms. The classification results are compared with raw data and manual feature extraction. The study shows that the proposed ML-based method could be used to monitor AD at its early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BINGOFAN发布了新的文献求助10
刚刚
cjy发布了新的文献求助10
1秒前
1秒前
2秒前
Orange应助yannnis采纳,获得10
2秒前
烟花应助纯真的安双采纳,获得10
2秒前
as发布了新的文献求助10
2秒前
顾化蛹发布了新的文献求助10
2秒前
是个憨憨发布了新的文献求助10
2秒前
chenxinqi发布了新的文献求助30
3秒前
坤坤发布了新的文献求助10
3秒前
Lebranium发布了新的文献求助10
3秒前
。。完成签到,获得积分20
3秒前
Jenny应助大力的立果采纳,获得150
3秒前
Du发布了新的文献求助30
4秒前
4秒前
5秒前
想发顶刊的牛马完成签到,获得积分10
5秒前
cjy完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
情怀应助陈年人少熬夜采纳,获得10
7秒前
Hart发布了新的文献求助10
7秒前
7秒前
7秒前
今后应助Whitney采纳,获得10
7秒前
燕燕完成签到,获得积分10
8秒前
duf完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
华仔应助宋晓静采纳,获得10
10秒前
沉默寻凝发布了新的文献求助50
10秒前
Owen应助。。采纳,获得10
10秒前
lyh发布了新的文献求助20
10秒前
深情安青应助wlz采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399