亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 深度学习 肿瘤科 医学 人工智能 内科学 计算机科学 放射治疗
作者
嘉毅 谷口,Junyi Peng,Wenbing Lv,Chen‐Fei Wu,Zhilong Chen,Guan‐Qun Zhou,Yaqin Wang,Li Lin,Lijun Lu,Ying Sun
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.230544
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN). The concordance index (C-index) was used to evaluate model performance in predicting disease-free survival (DFS). The survival benefits of concurrent chemoradiation therapy (CCRT) were analyzed in model-defined risk groups. Results The C-indexes of Model RC for predicting DFS were significantly higher than those of TNM staging in the internal (0.79 versus 0.53) and external (0.79 versus 0.62, both P < .001) testing cohorts. The 5-year DFS for the Model RC-defined low-risk group was significantly better than that of the high-risk group (90.6% versus 58.9%, P < .001). In high-risk patients, those who received CCRT had a higher 5-year DFS rate than those who did not (58.7% versus 28.6%, P = .03). There was no evidence of a difference in 5-year DFS rate in low-risk patients who did or did not receive CCRT (91.9% versus 81.3%, P = .19). Conclusion Serial MRI before and after IC can effectively predict survival in LA-NPC. The radiomics-clinical prognostic model developed using a GCN-based deep learning method showed good risk discrimination capabilities and may facilitate risk-adaptive therapy. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L&M发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
仁爱的雁芙完成签到,获得积分10
5秒前
9秒前
mmmm完成签到 ,获得积分10
10秒前
hmf1995完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
21秒前
26秒前
27秒前
能干的荆完成签到 ,获得积分10
28秒前
满意谷波发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
37秒前
YingHHH完成签到,获得积分20
41秒前
SciGPT应助满意谷波采纳,获得10
42秒前
ovo发布了新的文献求助10
43秒前
Akim应助善良的白昼采纳,获得10
49秒前
量子星尘发布了新的文献求助10
50秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
火星上香菇完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
smile发布了新的文献求助50
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
实验室憨批的师弟完成签到,获得积分10
1分钟前
1分钟前
yaoli0823发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
wykion完成签到,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Hello应助忧伤的半梅采纳,获得10
1分钟前
三泥完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660936
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743712
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462