Prediction of Intensive Care Length of Stay for Surviving and Nonsurviving Patients Using Deep Learning

医学 标杆管理 一致性 重症监护室 重症监护 试验装置 急诊医学 人口 文档 重症监护医学 内科学 人工智能 计算机科学 业务 环境卫生 营销 程序设计语言
作者
Ludmila Brochini,Xinggang Liu,Louis Atallah,Pamela J. Amelung,Robin French,Omar Badawi
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ccm.0000000000006588
摘要

Objectives: Length of stay (LOS) models support evaluating ICU care; however, current benchmarking models fail to consider differences in LOS between surviving and nonsurviving patients, which can lead to biased predictions toward the surviving population. We aim to develop a model addressing this as well as documentation bias to improve ICU benchmarking. Design: The Critical Care Outcomes Prediction Model (CCOPM) LOS uses patient characteristics, vitals, and laboratories during the first 24 hours of ICU admission to predict LOS in the hospital and ICU using a deep learning framework for modeling time to events with competing risk. Data was randomly divided into training, validation, and test (hold out) sets in a 2:1:1 ratio. Setting: Electronic ICU Research Institute database from participating tele-critical care programs. Patients: Six hundred sixty-nine thousand eight hundred seventy-six ICU admissions pertaining to 628,815 patients from 329 ICUs in 194 U.S. hospitals, from 2017 to 2019. Interventions: None. Measurements and Main Results: Model performance was assessed using the coefficient of determination ( R 2 ), concordance index, mean absolute error, and calibration. For individual stays in the test set, the ICU LOS model presented R 2 = 0.29 and 0.23 for surviving and nonsurviving populations, respectively, at the individual level and R 2 = 0.48 and 0.23 at the ICU level. Conversely, hospital LOS model presented R 2 = 0.46 and 0.52 at the individual level and R 2 = 0.71 and 0.64 at the ICU level. In the subset of the test set containing predictions from Acute Physiology and Chronic Health Evaluation (APACHE) IVb, R 2 of ICU LOS for surviving and nonsurviving populations was, respectively, 0.30 and 0.23 for the CCOPM and 0.16 and zero for APACHE IVb. For hospital LOS, the values were R 2 = 0.39 and 0.40 for the CCOPM and 0.27 and zero for APACHE IVb. Conclusions: This novel LOS model represents a step forward in achieving more equitable benchmarking across diverse ICU settings with varying risk profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的问柳完成签到 ,获得积分10
刚刚
1秒前
sevten完成签到,获得积分10
2秒前
Hello应助茜茜哥哥采纳,获得10
2秒前
咎如天发布了新的文献求助10
3秒前
小明仔完成签到 ,获得积分20
3秒前
3秒前
虚幻靖易完成签到,获得积分10
6秒前
无辜紫菜发布了新的文献求助10
6秒前
6秒前
苏小喵发布了新的文献求助10
7秒前
8秒前
畅快问蕊发布了新的文献求助10
8秒前
Harevin完成签到,获得积分10
8秒前
橙子发布了新的文献求助10
9秒前
哟哟哟完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
李烛尘发布了新的文献求助10
9秒前
楼谨言完成签到,获得积分10
11秒前
Lucas应助哼哼唧唧采纳,获得10
11秒前
axin发布了新的文献求助10
11秒前
烟花应助壮观的擎采纳,获得10
12秒前
su123发布了新的文献求助10
12秒前
14秒前
在水一方应助生椰拿铁采纳,获得10
14秒前
dirac完成签到,获得积分10
14秒前
8899发布了新的文献求助10
14秒前
茜茜哥哥发布了新的文献求助10
15秒前
wyx发布了新的文献求助10
15秒前
16秒前
橙子慢慢来完成签到,获得积分10
18秒前
称心冬云发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
鸣笛应助畅快问蕊采纳,获得10
19秒前
19秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020