Prediction of Intensive Care Length of Stay for Surviving and Nonsurviving Patients Using Deep Learning

医学 标杆管理 一致性 重症监护室 重症监护 试验装置 急诊医学 人口 文档 重症监护医学 内科学 人工智能 计算机科学 业务 环境卫生 营销 程序设计语言
作者
Ludmila Brochini,Xinggang Liu,Louis Atallah,Pamela J. Amelung,Robin French,Omar Badawi
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/ccm.0000000000006588
摘要

Objectives: Length of stay (LOS) models support evaluating ICU care; however, current benchmarking models fail to consider differences in LOS between surviving and nonsurviving patients, which can lead to biased predictions toward the surviving population. We aim to develop a model addressing this as well as documentation bias to improve ICU benchmarking. Design: The Critical Care Outcomes Prediction Model (CCOPM) LOS uses patient characteristics, vitals, and laboratories during the first 24 hours of ICU admission to predict LOS in the hospital and ICU using a deep learning framework for modeling time to events with competing risk. Data was randomly divided into training, validation, and test (hold out) sets in a 2:1:1 ratio. Setting: Electronic ICU Research Institute database from participating tele-critical care programs. Patients: Six hundred sixty-nine thousand eight hundred seventy-six ICU admissions pertaining to 628,815 patients from 329 ICUs in 194 U.S. hospitals, from 2017 to 2019. Interventions: None. Measurements and Main Results: Model performance was assessed using the coefficient of determination ( R 2 ), concordance index, mean absolute error, and calibration. For individual stays in the test set, the ICU LOS model presented R 2 = 0.29 and 0.23 for surviving and nonsurviving populations, respectively, at the individual level and R 2 = 0.48 and 0.23 at the ICU level. Conversely, hospital LOS model presented R 2 = 0.46 and 0.52 at the individual level and R 2 = 0.71 and 0.64 at the ICU level. In the subset of the test set containing predictions from Acute Physiology and Chronic Health Evaluation (APACHE) IVb, R 2 of ICU LOS for surviving and nonsurviving populations was, respectively, 0.30 and 0.23 for the CCOPM and 0.16 and zero for APACHE IVb. For hospital LOS, the values were R 2 = 0.39 and 0.40 for the CCOPM and 0.27 and zero for APACHE IVb. Conclusions: This novel LOS model represents a step forward in achieving more equitable benchmarking across diverse ICU settings with varying risk profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
insane发布了新的文献求助10
刚刚
干净的雪一完成签到,获得积分20
刚刚
酷炫若枫发布了新的文献求助10
1秒前
ljw完成签到,获得积分10
1秒前
1秒前
妮妮完成签到 ,获得积分10
2秒前
五月完成签到 ,获得积分10
2秒前
2秒前
回忆杀完成签到,获得积分20
3秒前
ZNN1234发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
尤萨完成签到,获得积分10
5秒前
科研通AI2S应助阿白采纳,获得10
5秒前
科研废物发布了新的文献求助10
5秒前
linger发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
lelelele发布了新的文献求助10
9秒前
9秒前
热情芝麻应助满意的梦竹采纳,获得10
10秒前
ZNN1234完成签到,获得积分10
10秒前
uup发布了新的文献求助10
10秒前
多来米完成签到,获得积分20
10秒前
Ivy完成签到,获得积分10
10秒前
12秒前
FashionBoy应助yyc采纳,获得10
13秒前
aldehyde应助lutiantian采纳,获得10
13秒前
泡泡糖完成签到,获得积分10
14秒前
彭于晏应助司徒迎曼采纳,获得10
14秒前
椰子水完成签到,获得积分10
15秒前
llllh完成签到 ,获得积分20
15秒前
英姑应助keyantong采纳,获得10
15秒前
文静三颜发布了新的文献求助10
15秒前
温暖白梅发布了新的文献求助10
16秒前
17秒前
SciGPT应助YuenYuen采纳,获得10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952