Deep learning‐based Monte Carlo dose prediction for heavy‐ion online adaptive radiotherapy and fast quality assurance: A feasibility study

质量保证 蒙特卡罗方法 计算机科学 放射治疗 体素 剂量学 深度学习 核医学 人工智能 医学 数学 统计 外部质量评估 病理 内科学
作者
Rui He,Jian Wang,Wei Wu,Hui Zhang,Yiheng Liu,Ying Luo,Xinyang Zhang,Yuanyuan Ma,Xinguo Liu,Yazhou Li,H. Peng,Pengbo He,Qiang Li
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17628
摘要

Abstract Background Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments. Purpose This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT. Methods and Materials A MC dose prediction DL model called CAM‐CHD U‐Net for HIT was introduced, based on the GATE/Geant4 MC simulation platform. The proposed model improved upon the original CHD U‐Net by adding a Channel Attention Mechanism (CAM). Two experiments were conducted, one with CHD U‐Net (Experiment 1) and another with CAM‐CHD U‐Net (Experiment 2), and involved data from 120 head and neck cancer patients. Using patient CT images, three‐dimensional energy matrices, and ray‐masks as inputs, the model completed the entire MC dose prediction process within a few seconds. Results In Experiment 2, within the Planned Target Volume (PTV) region, the average gamma passing rate (3%/3 mm) between the predicted dose and true MC dose reached 99.31%, and 96.48% across all body voxels. Experiment 2 demonstrated a 46.15% reduction in the mean absolute difference in in organs at risk compared to Experiment 1. Conclusions By extracting relevant parameters of radiotherapy plans, the CAM‐CHD U‐Net model can directly and accurately predict independent MC dose, and has a high gamma passing rate with the ground truth dose (the dose obtained after a complete MC simulation). Our workflow enables the implementation of heavy ion OART, and the predicted MCDose can be used for rapid QA of HIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随意完成签到,获得积分20
刚刚
朴实一一完成签到 ,获得积分10
1秒前
1秒前
爆米花应助菜菜采纳,获得10
1秒前
Ansels完成签到,获得积分10
1秒前
2秒前
2秒前
爆米花应助Mine采纳,获得10
3秒前
YiyueChan完成签到,获得积分10
3秒前
3秒前
Carlos完成签到,获得积分10
3秒前
Clover完成签到,获得积分10
3秒前
童童完成签到,获得积分10
4秒前
鱼儿完成签到,获得积分20
5秒前
5秒前
试尝胆大应助mmyhn采纳,获得10
5秒前
执着的妙芙完成签到,获得积分20
5秒前
6秒前
huoyan2006完成签到,获得积分10
6秒前
Akim应助烂漫的静枫采纳,获得30
7秒前
7秒前
Sue发布了新的文献求助30
8秒前
乐乐发布了新的文献求助10
9秒前
顺利的尔烟完成签到,获得积分10
10秒前
大个应助猪猪hero采纳,获得10
10秒前
今天签到了吗完成签到 ,获得积分10
11秒前
遐蝶发布了新的文献求助10
11秒前
文良颜丑完成签到,获得积分10
11秒前
12秒前
12秒前
暮雨昨歇完成签到,获得积分10
12秒前
Dasph7发布了新的文献求助10
12秒前
jim完成签到 ,获得积分10
12秒前
小蘑菇应助生动的翠容采纳,获得10
12秒前
13秒前
布拉德皮特厚完成签到,获得积分10
13秒前
南充市第一中学完成签到,获得积分10
13秒前
13秒前
jsdiohfsiodhg发布了新的文献求助10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926