Deep learning‐based Monte Carlo dose prediction for heavy‐ion online adaptive radiotherapy and fast quality assurance: A feasibility study

质量保证 蒙特卡罗方法 计算机科学 放射治疗 体素 剂量学 深度学习 核医学 人工智能 医学 数学 统计 内科学 病理 外部质量评估
作者
Rui He,Jian Wang,Wei Wu,Hui Zhang,Yiheng Liu,Ying Luo,Xinyang Zhang,Yuanyuan Ma,Xinguo Liu,Yazhou Li,H. Peng,Pengbo He,Qiang Li
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17628
摘要

Abstract Background Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments. Purpose This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT. Methods and Materials A MC dose prediction DL model called CAM‐CHD U‐Net for HIT was introduced, based on the GATE/Geant4 MC simulation platform. The proposed model improved upon the original CHD U‐Net by adding a Channel Attention Mechanism (CAM). Two experiments were conducted, one with CHD U‐Net (Experiment 1) and another with CAM‐CHD U‐Net (Experiment 2), and involved data from 120 head and neck cancer patients. Using patient CT images, three‐dimensional energy matrices, and ray‐masks as inputs, the model completed the entire MC dose prediction process within a few seconds. Results In Experiment 2, within the Planned Target Volume (PTV) region, the average gamma passing rate (3%/3 mm) between the predicted dose and true MC dose reached 99.31%, and 96.48% across all body voxels. Experiment 2 demonstrated a 46.15% reduction in the mean absolute difference in in organs at risk compared to Experiment 1. Conclusions By extracting relevant parameters of radiotherapy plans, the CAM‐CHD U‐Net model can directly and accurately predict independent MC dose, and has a high gamma passing rate with the ground truth dose (the dose obtained after a complete MC simulation). Our workflow enables the implementation of heavy ion OART, and the predicted MCDose can be used for rapid QA of HIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
研友_38KvPZ完成签到,获得积分10
1秒前
传奇3应助负蕲采纳,获得10
1秒前
从容白凝完成签到,获得积分10
1秒前
2秒前
2秒前
李兴发布了新的文献求助10
2秒前
2秒前
聪明的一德完成签到,获得积分10
3秒前
3秒前
务实青旋发布了新的文献求助10
4秒前
科研通AI6应助kk采纳,获得10
4秒前
灵76完成签到,获得积分10
5秒前
5秒前
CodeCraft应助jimjimjim111采纳,获得10
5秒前
啦啦啦喽发布了新的文献求助10
5秒前
羊羊完成签到,获得积分10
5秒前
orixero应助Hoyal_He采纳,获得80
5秒前
6秒前
娃哈哈发布了新的文献求助10
6秒前
Mark完成签到,获得积分10
6秒前
6秒前
6秒前
陈瑶完成签到,获得积分10
7秒前
烟花应助JABBA采纳,获得10
7秒前
栀暖棠深完成签到,获得积分10
7秒前
7秒前
科研通AI6应助yu采纳,获得10
7秒前
8秒前
PaoPao发布了新的文献求助10
8秒前
小二郎应助云上人采纳,获得10
8秒前
宠仙发布了新的文献求助10
8秒前
海滨之鹅完成签到,获得积分10
9秒前
9秒前
9秒前
Chochee完成签到,获得积分10
9秒前
LANER完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426