Performance evaluation of 3D printed acoustic metamaterial using soft computing approach

3d打印 超材料 软计算 声学 材料科学 计算机科学 工程类 物理 制造工程 人工智能 人工神经网络 光电子学
作者
Saliq Shamim Shah,Daljeet Singh,J.S. Saini
出处
期刊:Mechanics of Advanced Materials and Structures [Taylor & Francis]
卷期号:: 1-18
标识
DOI:10.1080/15376494.2024.2423283
摘要

This paper introduces a novel methodology for predicting the acoustic absorption coefficient of DENORMS cell based acoustic metamaterial. The samples were printed from resin using Digital Light Processing based 3D printing technique. The manufactured samples were tested in an Impedance tube using the two Microphone method. A virtual simulation test rig was used to generate data sets for geometrically distinct DENORMS cell based metamaterial. Four distinct soft computing techniques specifically the "Neural Networks (NN), Random Forests (RF), Decision Trees (Rpart) and Generalized Linear Model (GLM)", were employed and compared to develop an accurate prediction model for forecasting the absorption coefficient of the developed metamaterial. The machine learning techniques were used due to their higher speed and lower computational power requirement compared to numerical simulations to determine the absorption coefficient. The input variables consist of the Spherical Diameter, Cylindrical Diameter, Cylinder Length of the DENORMS cell and Frequency of Incident noise. The performance of the four prediction models was evaluated based on criteria such as Root mean square error, Coefficient of determination, Correlation and Accuracy. Ten-Fold cross validation is performed to test the robustness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clown完成签到,获得积分10
2秒前
3秒前
大胆的夏天完成签到,获得积分10
3秒前
4秒前
4秒前
深情安青应助烟火星辰采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
余淮完成签到,获得积分10
6秒前
学术混子完成签到,获得积分10
6秒前
7秒前
7秒前
小杭76应助木子采纳,获得10
8秒前
祁夫人完成签到,获得积分10
8秒前
马嘉泽完成签到,获得积分10
8秒前
8秒前
尉迟希望应助像只猫采纳,获得10
8秒前
NexusExplorer应助小蚂蚁采纳,获得10
9秒前
9秒前
En应助林业光魔采纳,获得10
10秒前
小马甲应助nono采纳,获得10
10秒前
10秒前
CC完成签到,获得积分20
11秒前
小马甲应助念梦采纳,获得10
12秒前
12秒前
qinlonhl完成签到,获得积分10
13秒前
Joie发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
酷酷的山雁完成签到,获得积分10
17秒前
冷静谷芹发布了新的文献求助10
18秒前
冷酷无情小鲨鱼完成签到 ,获得积分10
19秒前
19秒前
19秒前
Akim应助Fen采纳,获得10
20秒前
20秒前
lxg发布了新的文献求助10
21秒前
脆脆鲨完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399