Performance evaluation of 3D printed acoustic metamaterial using soft computing approach

3d打印 超材料 软计算 声学 材料科学 计算机科学 工程类 物理 制造工程 人工智能 人工神经网络 光电子学
作者
Saliq Shamim Shah,Daljeet Singh,J.S. Saini
出处
期刊:Mechanics of Advanced Materials and Structures [Informa]
卷期号:: 1-18
标识
DOI:10.1080/15376494.2024.2423283
摘要

This paper introduces a novel methodology for predicting the acoustic absorption coefficient of DENORMS cell based acoustic metamaterial. The samples were printed from resin using Digital Light Processing based 3D printing technique. The manufactured samples were tested in an Impedance tube using the two Microphone method. A virtual simulation test rig was used to generate data sets for geometrically distinct DENORMS cell based metamaterial. Four distinct soft computing techniques specifically the "Neural Networks (NN), Random Forests (RF), Decision Trees (Rpart) and Generalized Linear Model (GLM)", were employed and compared to develop an accurate prediction model for forecasting the absorption coefficient of the developed metamaterial. The machine learning techniques were used due to their higher speed and lower computational power requirement compared to numerical simulations to determine the absorption coefficient. The input variables consist of the Spherical Diameter, Cylindrical Diameter, Cylinder Length of the DENORMS cell and Frequency of Incident noise. The performance of the four prediction models was evaluated based on criteria such as Root mean square error, Coefficient of determination, Correlation and Accuracy. Ten-Fold cross validation is performed to test the robustness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyq617569158完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
Jasper应助坚强的严青采纳,获得10
1秒前
yyl完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Lynn完成签到,获得积分20
2秒前
科研r发布了新的文献求助10
2秒前
xiumei1998完成签到,获得积分10
3秒前
SciGPT应助Jazmin采纳,获得10
3秒前
3秒前
张炎完成签到,获得积分0
3秒前
小璐sunny发布了新的文献求助10
3秒前
Joan发布了新的文献求助10
4秒前
tigerxhz发布了新的文献求助10
4秒前
Lyuemei发布了新的文献求助10
4秒前
南北发布了新的文献求助10
4秒前
4秒前
4秒前
orixero应助早早采纳,获得10
5秒前
二维世界的鱼完成签到,获得积分10
5秒前
顺利皮带关注了科研通微信公众号
6秒前
6秒前
peach发布了新的文献求助10
6秒前
Akim应助小宁软糖采纳,获得10
6秒前
天天快乐应助科研小菜采纳,获得10
7秒前
7秒前
研途顺利发布了新的文献求助10
7秒前
7秒前
lele发布了新的文献求助10
7秒前
8秒前
9秒前
桔梗完成签到,获得积分10
9秒前
wanci应助布丁采纳,获得10
9秒前
10秒前
ZhangY发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567