MSTBC: X Bot Detection with Multiple Social-Temporal Behavior Contrast

对比度(视觉) 计算机科学 人工智能
作者
Zhishu Jiang,Wei Chen,Weijie Zhang,Youfang Lin,Huaiyu Wan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5699605/v1
摘要

Abstract X bot detection aims to automatically identify malicious X bots on the X platform, playing a crucial role in protecting information and maintaining platform stability.Recently, mixture-based methods primarily simultaneously consider investigating various social features (e.g. user metadata, tweets, and social relationships) of users to differentiate humans and bots, which hold excellent performance. However, two major challenges have not been adequately addressed in current mixture-based methods: (1) Humans and bots exhibit different temporal behavior patterns, which has not been fully explored.(2) Existing mixture-based methods promote the detection by fusing diverse features but overlook the noise accumulation that arises during the fusion process.In this paper, we propose a novel X bot detection method with Multiple Social-Temporal Behavior Contrast (MSTBC), which integrates users' multiple social-temporal behaviors, including the static behavior (description content), social behavior (social structure) and temporal behavior (temporal behavior patterns).Specifically, the fine-grained temporal behaviors of users are represented as four different prompts. A temporal behavior PLM with temporal behavior prompts in MSTBC serves as the encoder to understand temporal behavior patterns.In addition, we employ multi-behavior contrast to minimize the differences of various features of users, alleviating the noise accumulation that arises during the fusion of diverse features.Experimental results demonstrate that MSTBC outperforms state-of-the-art models on four datasets. The code is available at https://anonymous.4open.science/r/MSTBC-C659.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的念柏完成签到,获得积分10
1秒前
1秒前
2秒前
DAYDAY发布了新的文献求助10
2秒前
我是老大应助和谐谷蕊采纳,获得10
3秒前
3秒前
ssc完成签到,获得积分20
3秒前
酷波er应助叉叉采纳,获得10
4秒前
Yumq发布了新的文献求助10
4秒前
5秒前
5秒前
文言完成签到,获得积分10
5秒前
5秒前
5秒前
daffodil发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
乐乐应助Justtry采纳,获得10
5秒前
6秒前
斯文稚晴发布了新的文献求助10
6秒前
ssc发布了新的文献求助10
6秒前
6秒前
8秒前
七彩祥云兔完成签到,获得积分10
8秒前
天天快乐应助忧郁的一刀采纳,获得10
8秒前
ccop完成签到,获得积分10
9秒前
9秒前
zhuj11应助pretty采纳,获得10
10秒前
求助发布了新的文献求助10
10秒前
bin发布了新的文献求助10
11秒前
无花果应助果粒红豆豆采纳,获得10
11秒前
Owen应助ssc采纳,获得10
12秒前
翻斗花园爆破手牛爷爷完成签到,获得积分10
12秒前
zhuj11应助LIUqi采纳,获得10
12秒前
沙拉酱发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126