PET/computed tomography radiomics combined with clinical features in predicting sarcopenia and prognosis of diffuse large B-cell lymphoma

肌萎缩 医学 无线电技术 逻辑回归 弥漫性大B细胞淋巴瘤 单变量 淋巴瘤 正电子发射断层摄影术 单变量分析 放射科 核医学 内科学 多元分析 机器学习 多元统计 计算机科学
作者
Fanghu Wang,Yang Chen,Xiaoyue Tan,Han Xu,Wantong Lu,Lijun Lu,Hui Yuan,Lei Jiang
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/mnm.0000000000001925
摘要

Background The study aimed to assess the role of 18 F-fluorodeoxyglucose (FDG) PET/computed tomography (CT) radiomics combined with clinical features using machine learning (ML) in predicting sarcopenia and prognosis of patients with diffuse large B-cell lymphoma (DLBCL). Methods A total of 178 DLBCL patients (118 and 60 applied for training and test sets, respectively) who underwent pretreatment 18 F-FDG PET/CT were retrospectively enrolled. Clinical characteristics and PET/CT radiomics features were analyzed, and feature selection was performed using univariate logistic regression and correlation analysis. Sarcopenia prediction models were built by ML algorithms and evaluated. Besides, prognostic models were also developed, and their associations with progression-free survival (PFS) and overall survival (OS) were identified. Results Fourteen features were finally selected to build sarcopenia prediction and prognosis models, including two clinical (maximum standard uptake value of muscle and BMI), nine PET (seven gray-level and two first-order), and three CT (three gray-level) radiomics features. Among sarcopenia prediction models, combined clinical-PET/CT radiomics features models outperformed other models; especially the support vector machine algorithm achieved the highest area under curve of 0.862, with the sensitivity, specificity, and accuracy of 79.2, 83.3, and 78.3% in the test set. Furthermore, the consistency index based on the prognostic models was 0.753 and 0.807 for PFS and OS, respectively. The enrolled patients were subsequently divided into high-risk and low-risk groups with significant differences, regardless of PFS or OS ( P < 0.05). Conclusion ML models incorporating clinical and PET/CT radiomics features could effectively predict the presence of sarcopenia and assess the prognosis in patients with DLBCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjx应助张凤采纳,获得10
刚刚
刚刚
疯狂的夏天完成签到,获得积分10
刚刚
P_Chem完成签到,获得积分10
刚刚
2秒前
2秒前
3秒前
星寒发布了新的文献求助10
4秒前
纯情的碧玉完成签到,获得积分10
4秒前
4秒前
杳鸢应助Zqs采纳,获得10
4秒前
4秒前
宋老师关注了科研通微信公众号
5秒前
乐乐应助哈里鹿呀采纳,获得10
5秒前
领导范儿应助mxzl采纳,获得20
5秒前
暴躁四叔应助nz采纳,获得30
6秒前
大方的寻雪完成签到,获得积分10
7秒前
多肉葡萄发布了新的文献求助10
7秒前
233发布了新的文献求助10
8秒前
飞羽发布了新的文献求助10
8秒前
JamesPei应助SDSD采纳,获得10
8秒前
10秒前
11秒前
12秒前
ErlanYang完成签到,获得积分10
13秒前
LEE123发布了新的文献求助10
14秒前
15秒前
无语的又琴完成签到,获得积分10
15秒前
xiaoxiao发布了新的文献求助10
15秒前
李爱国应助森气采纳,获得10
16秒前
16秒前
17秒前
稳重的烙发布了新的文献求助10
17秒前
Orange应助zhaoxuelian采纳,获得10
18秒前
思源应助X0RB64采纳,获得10
19秒前
咕嘟咕嘟发布了新的文献求助10
20秒前
宋老师发布了新的文献求助10
20秒前
20秒前
chinzz应助万幸鹿采纳,获得10
22秒前
Mint发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443790
求助须知:如何正确求助?哪些是违规求助? 3039911
关于积分的说明 8978905
捐赠科研通 2728452
什么是DOI,文献DOI怎么找? 1496524
科研通“疑难数据库(出版商)”最低求助积分说明 691689
邀请新用户注册赠送积分活动 689221