PET/computed tomography radiomics combined with clinical features in predicting sarcopenia and prognosis of diffuse large B-cell lymphoma

肌萎缩 医学 无线电技术 逻辑回归 弥漫性大B细胞淋巴瘤 单变量 淋巴瘤 正电子发射断层摄影术 单变量分析 放射科 核医学 内科学 多元分析 机器学习 多元统计 计算机科学
作者
Fanghu Wang,Yang Chen,Xiaoyue Tan,Han Xu,Wantong Lu,Lijun Lu,Hui Yuan,Lei Jiang
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/mnm.0000000000001925
摘要

Background The study aimed to assess the role of 18 F-fluorodeoxyglucose (FDG) PET/computed tomography (CT) radiomics combined with clinical features using machine learning (ML) in predicting sarcopenia and prognosis of patients with diffuse large B-cell lymphoma (DLBCL). Methods A total of 178 DLBCL patients (118 and 60 applied for training and test sets, respectively) who underwent pretreatment 18 F-FDG PET/CT were retrospectively enrolled. Clinical characteristics and PET/CT radiomics features were analyzed, and feature selection was performed using univariate logistic regression and correlation analysis. Sarcopenia prediction models were built by ML algorithms and evaluated. Besides, prognostic models were also developed, and their associations with progression-free survival (PFS) and overall survival (OS) were identified. Results Fourteen features were finally selected to build sarcopenia prediction and prognosis models, including two clinical (maximum standard uptake value of muscle and BMI), nine PET (seven gray-level and two first-order), and three CT (three gray-level) radiomics features. Among sarcopenia prediction models, combined clinical-PET/CT radiomics features models outperformed other models; especially the support vector machine algorithm achieved the highest area under curve of 0.862, with the sensitivity, specificity, and accuracy of 79.2, 83.3, and 78.3% in the test set. Furthermore, the consistency index based on the prognostic models was 0.753 and 0.807 for PFS and OS, respectively. The enrolled patients were subsequently divided into high-risk and low-risk groups with significant differences, regardless of PFS or OS ( P < 0.05). Conclusion ML models incorporating clinical and PET/CT radiomics features could effectively predict the presence of sarcopenia and assess the prognosis in patients with DLBCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助tesla采纳,获得10
1秒前
小萝卜睿睿完成签到,获得积分20
1秒前
梅槑完成签到 ,获得积分10
1秒前
Apr9810h完成签到 ,获得积分10
2秒前
华北走地鸡完成签到,获得积分10
2秒前
淡定亦云完成签到 ,获得积分10
2秒前
2秒前
Jasper应助鱼摆摆摆摆采纳,获得10
3秒前
IvanLIu完成签到 ,获得积分10
3秒前
ZhaoCun完成签到,获得积分10
3秒前
风趣秋白完成签到,获得积分10
4秒前
Serendipity发布了新的文献求助10
4秒前
研友_ZeqAxZ完成签到,获得积分10
4秒前
petrichor应助pokemeow采纳,获得10
4秒前
5秒前
英勇的幻露完成签到,获得积分10
5秒前
刘澄伊完成签到,获得积分10
6秒前
神勇初瑶完成签到,获得积分10
6秒前
117318完成签到,获得积分10
6秒前
mnliao完成签到,获得积分10
7秒前
街道办事部完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
7秒前
William完成签到 ,获得积分10
7秒前
自由与星星完成签到,获得积分10
8秒前
8秒前
koial完成签到 ,获得积分10
8秒前
8秒前
hqn完成签到 ,获得积分10
8秒前
蛋蛋完成签到 ,获得积分20
9秒前
123566完成签到,获得积分10
9秒前
文小杰发布了新的文献求助10
10秒前
酷酷菲音发布了新的文献求助10
10秒前
淡淡觅波发布了新的文献求助30
10秒前
brick2024完成签到,获得积分10
10秒前
偌佟发布了新的文献求助10
11秒前
11秒前
文献啊文献完成签到,获得积分10
11秒前
wqy完成签到 ,获得积分10
11秒前
开心完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910