Interpretable modulated differentiable STFT and physics-informed balanced spectrum metric for freight train wheelset bearing cross-machine transfer fault diagnosis under speed fluctuations

方位(导航) 火车 公制(单位) 短时傅里叶变换 可微函数 断层(地质) 质量(理念) 判别式 工程类 计算机科学 机器学习 算法 人工智能 物理 数学 傅里叶变换 数学分析 地震学 傅里叶分析 运营管理 量子力学 地图学 地质学 地理
作者
Chao He,Hongmei Shi,Ruixin Li,Jianbo Li,Zujun Yu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102568-102568 被引量:10
标识
DOI:10.1016/j.aei.2024.102568
摘要

The service conditions of wheelset bearings has a direct impact on the safe operation of railway heavy haul freight trains as the key components. However, speed fluctuation of the trains and few fault samples are the two main problems that restrict the accuracy of bearing fault diagnosis. Therefore, a cross-machine transfer diagnosis (pyDSN) network coupled with interpretable modulated differentiable short-time Fourier transform (STFT) and physics-informed balanced spectrum quality metric is proposed to learn domain-invariant and discriminative features under time-varying speeds. Firstly, due to insufficiency in extracting extract frequency components of time-varying speed signals using fixed windows, a modulated differentiable STFT (MDSTFT) that is interpretable with STFT-informed theoretical support, is proposed to extract the robust time-frequency spectrum (TFS). During training process, multiple windows with different lengths dynamically change. Also, in addition to the classification metric and domain discrepancy metric, we creatively introduce a third kind of metric, referred to as the physics-informed metric, to enhance transferable TFS. A physics-informed balanced spectrum quality (BSQ) regularization loss is devised to guide an optimization direction for MDSTFT and model. With it, not only can model acquire high-quality TFS, but also a physics-restricted domain adaptation network can be also acquired, making it learn real-world physics knowledge, ultimately diminish the domain discrepancy across different datasets. The experiment is conducted in the scenario of migrating from the laboratory datasets to the freight train dataset, indicating that the hybrid-driven pyDSN outperforms existing methods and has practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑完成签到,获得积分10
1秒前
魔幻的语堂完成签到,获得积分10
1秒前
Candice应助优美丹雪采纳,获得10
2秒前
CipherSage应助优美丹雪采纳,获得10
2秒前
MADAO发布了新的文献求助10
3秒前
飞随完成签到,获得积分10
5秒前
w婷完成签到 ,获得积分10
5秒前
影子完成签到,获得积分10
7秒前
8秒前
Hello应助123采纳,获得10
9秒前
SC完成签到 ,获得积分10
11秒前
子夜完成签到,获得积分10
11秒前
拾遗就是我完成签到,获得积分10
11秒前
七七不八八完成签到 ,获得积分10
11秒前
chen完成签到,获得积分10
12秒前
高山流水完成签到,获得积分10
13秒前
温暖宛筠完成签到,获得积分10
14秒前
赵小七0714完成签到,获得积分10
15秒前
15秒前
要减肥香水完成签到,获得积分10
16秒前
16秒前
Polymer72应助ruixuekuangben采纳,获得10
18秒前
诗蕊完成签到 ,获得积分0
18秒前
19秒前
Sofia完成签到 ,获得积分10
19秒前
开心向真完成签到,获得积分10
20秒前
赵小七0714发布了新的文献求助10
21秒前
xiao柒柒柒完成签到,获得积分10
22秒前
spotless完成签到,获得积分10
24秒前
123发布了新的文献求助10
24秒前
ruixuekuangben完成签到,获得积分10
25秒前
田二亩完成签到,获得积分10
26秒前
海凌子完成签到,获得积分10
27秒前
brian发布了新的文献求助10
28秒前
清逸之风完成签到 ,获得积分10
28秒前
菠萝汁完成签到,获得积分10
28秒前
寒冷天空完成签到,获得积分10
30秒前
细致且入微完成签到,获得积分10
30秒前
酷波er应助小蜗牛采纳,获得10
31秒前
Air完成签到 ,获得积分10
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388647
求助须知:如何正确求助?哪些是违规求助? 3000871
关于积分的说明 8794044
捐赠科研通 2687109
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680689
邀请新用户注册赠送积分活动 673329