SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助hgy19971017采纳,获得10
1秒前
2秒前
852应助漫威蜘蛛侠采纳,获得10
2秒前
浩二驳回了EUAN应助
3秒前
3秒前
紫薯发布了新的文献求助10
5秒前
明亮的啤酒完成签到,获得积分10
5秒前
5秒前
fei发布了新的文献求助10
6秒前
啊啊啊啊完成签到 ,获得积分10
6秒前
7秒前
7秒前
拾柒发布了新的文献求助10
7秒前
7秒前
在水一方应助Niu采纳,获得10
7秒前
8秒前
8秒前
8秒前
民民哥发布了新的文献求助10
9秒前
11完成签到,获得积分20
10秒前
苏苏速速发布了新的文献求助10
10秒前
oliv完成签到 ,获得积分10
10秒前
桐桐应助siren采纳,获得10
11秒前
后知后觉发布了新的文献求助10
12秒前
是漏漏呀完成签到 ,获得积分10
12秒前
科研通AI2S应助珞珈采纳,获得10
12秒前
金刚经应助mbf采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
帅气的八宝粥完成签到,获得积分10
14秒前
14秒前
卷清发布了新的文献求助10
14秒前
调皮万怨完成签到 ,获得积分10
15秒前
卡卡罗特完成签到,获得积分10
15秒前
华仔应助研友_想想采纳,获得10
15秒前
17秒前
谢煜娜发布了新的文献求助10
17秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
India's foreign trade policy and its performance in the world economy 450
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3196026
求助须知:如何正确求助?哪些是违规求助? 2844745
关于积分的说明 8051428
捐赠科研通 2509434
什么是DOI,文献DOI怎么找? 1341686
科研通“疑难数据库(出版商)”最低求助积分说明 639229
邀请新用户注册赠送积分活动 608439