SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王新一完成签到,获得积分10
1秒前
1秒前
温暖的数据线完成签到 ,获得积分10
2秒前
2秒前
3秒前
Oliver完成签到 ,获得积分10
3秒前
3秒前
调皮黑猫完成签到,获得积分10
3秒前
4秒前
4秒前
慈祥的爆米花完成签到,获得积分10
4秒前
NexusExplorer应助Jenny采纳,获得10
4秒前
AWESOME完成签到,获得积分10
5秒前
Hello应助wusanlinshi采纳,获得40
5秒前
情怀应助JoaquinH采纳,获得10
5秒前
shensir完成签到,获得积分20
5秒前
JIE完成签到,获得积分10
5秒前
逃离地球完成签到 ,获得积分10
6秒前
王彤彤发布了新的文献求助10
6秒前
6秒前
丰知然应助元谷雪采纳,获得10
6秒前
LI发布了新的文献求助10
6秒前
完美夏天完成签到,获得积分10
7秒前
cnbhhhhh发布了新的文献求助10
7秒前
dollarpuff完成签到,获得积分10
7秒前
CSS发布了新的文献求助10
8秒前
shensir发布了新的文献求助10
8秒前
科目三应助纪俊辰采纳,获得10
8秒前
JinkFun发布了新的文献求助10
8秒前
stick完成签到,获得积分10
8秒前
澧abc完成签到 ,获得积分10
9秒前
研友_X89o6n发布了新的文献求助200
9秒前
yingying完成签到 ,获得积分10
10秒前
炙热柚子完成签到,获得积分10
10秒前
HUMBLE完成签到,获得积分10
10秒前
xiaoyezi123完成签到,获得积分10
11秒前
悦兮完成签到 ,获得积分10
11秒前
Ye13完成签到,获得积分10
11秒前
坚强血茗完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3197408
求助须知:如何正确求助?哪些是违规求助? 2846255
关于积分的说明 8058280
捐赠科研通 2511061
什么是DOI,文献DOI怎么找? 1343076
科研通“疑难数据库(出版商)”最低求助积分说明 639510
邀请新用户注册赠送积分活动 609024