SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜鸟发布了新的文献求助10
1秒前
onethree完成签到 ,获得积分10
4秒前
光之战士完成签到,获得积分10
4秒前
6秒前
科研通AI2S应助难摧采纳,获得10
8秒前
朱古力完成签到 ,获得积分10
8秒前
共享精神应助不散的和弦采纳,获得30
9秒前
陈功完成签到,获得积分10
10秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得30
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得20
13秒前
陈功发布了新的文献求助10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
开心匪应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
林璇璇完成签到,获得积分10
14秒前
14秒前
小二郎应助肉丸子采纳,获得10
16秒前
天天快乐应助zlfk采纳,获得10
16秒前
16秒前
林璇璇发布了新的文献求助10
17秒前
旺仔牛奶糖完成签到,获得积分10
18秒前
秀儿发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190519
求助须知:如何正确求助?哪些是违规求助? 2839655
关于积分的说明 8025072
捐赠科研通 2502595
什么是DOI,文献DOI怎么找? 1336609
科研通“疑难数据库(出版商)”最低求助积分说明 637879
邀请新用户注册赠送积分活动 606055