SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助wxxz采纳,获得10
1秒前
CipherSage应助ddingk采纳,获得10
1秒前
jagger发布了新的文献求助10
1秒前
tony完成签到,获得积分10
1秒前
空空伊完成签到 ,获得积分10
1秒前
csl完成签到,获得积分10
1秒前
小李同学完成签到,获得积分10
2秒前
芷兰丁香发布了新的文献求助10
2秒前
麦麦完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
June完成签到,获得积分10
3秒前
慕青应助邮寄短诗采纳,获得10
3秒前
Jasper应助兔兔采纳,获得10
3秒前
Stella应助悦己采纳,获得30
4秒前
4秒前
4秒前
正好完成签到,获得积分10
5秒前
vcc完成签到 ,获得积分10
5秒前
夕荀发布了新的文献求助10
5秒前
安徒生完成签到,获得积分10
6秒前
6秒前
无语完成签到,获得积分10
6秒前
周周发布了新的文献求助10
7秒前
7秒前
希望天下0贩的0应助彳亍采纳,获得10
7秒前
林炎发布了新的文献求助10
7秒前
小羽完成签到 ,获得积分10
8秒前
9秒前
追寻紫夏完成签到 ,获得积分10
9秒前
霸气的菠萝完成签到,获得积分10
9秒前
Wen完成签到,获得积分10
9秒前
开放青旋应助苏silence采纳,获得80
9秒前
10秒前
yu完成签到 ,获得积分10
10秒前
Lucifer完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034