SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
豌豆射手发布了新的文献求助50
1秒前
stuffmatter应助MaHongyang采纳,获得10
1秒前
kwl完成签到,获得积分10
2秒前
ured发布了新的文献求助10
4秒前
6秒前
大胆幼翠关注了科研通微信公众号
9秒前
9秒前
10秒前
jindou完成签到,获得积分10
10秒前
yufanhui应助慈祥的沛珊采纳,获得10
10秒前
小陈完成签到 ,获得积分10
13秒前
13秒前
AURORA发布了新的文献求助10
14秒前
14秒前
852应助baomingqiu采纳,获得10
16秒前
张小小完成签到,获得积分10
16秒前
16秒前
栗子应助周周采纳,获得10
17秒前
汉堡包应助追寻的冬寒采纳,获得10
18秒前
小九的呀完成签到 ,获得积分10
19秒前
archer01发布了新的文献求助10
20秒前
20秒前
小莹完成签到,获得积分10
23秒前
Jiayee发布了新的文献求助10
25秒前
毛豆应助小鱼僧采纳,获得10
26秒前
MrH发布了新的文献求助10
27秒前
明亮随阴发布了新的文献求助10
27秒前
无花果应助李盈盈采纳,获得10
28秒前
无花果应助AURORA采纳,获得30
30秒前
30秒前
宓天问完成签到,获得积分10
32秒前
在水一方应助Xing采纳,获得10
33秒前
小二郎应助archer01采纳,获得10
33秒前
舒服的初蓝完成签到,获得积分10
33秒前
34秒前
玖梦恨别离完成签到 ,获得积分10
34秒前
36秒前
Yxy完成签到,获得积分10
38秒前
42秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Handbook on People's China (1957) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3188878
求助须知:如何正确求助?哪些是违规求助? 2838335
关于积分的说明 8019519
捐赠科研通 2501171
什么是DOI,文献DOI怎么找? 1335362
科研通“疑难数据库(出版商)”最低求助积分说明 637508
邀请新用户注册赠送积分活动 605630