SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_nEWRJ8完成签到,获得积分10
1秒前
奋斗的元珊完成签到,获得积分10
1秒前
2秒前
金刚经应助dan1029采纳,获得10
2秒前
乐乐应助dan1029采纳,获得10
2秒前
丘比特应助dan1029采纳,获得10
2秒前
2秒前
彭于晏应助dan1029采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
3秒前
科研通AI2S应助Ke采纳,获得10
4秒前
一一发布了新的文献求助10
4秒前
调皮的薯片完成签到 ,获得积分10
4秒前
4秒前
curtisness应助袁思宇采纳,获得10
6秒前
xjcy应助土豆菜卷采纳,获得10
7秒前
10秒前
10秒前
orixero应助杏仁巧克力采纳,获得30
12秒前
12秒前
13秒前
1347365881完成签到,获得积分10
13秒前
波仔完成签到,获得积分20
13秒前
15秒前
11贾发布了新的文献求助10
18秒前
栗栗栗子发布了新的文献求助10
18秒前
basepair发布了新的文献求助10
18秒前
可期完成签到,获得积分10
19秒前
平淡的翅膀关注了科研通微信公众号
19秒前
完美世界应助PANYIAO采纳,获得10
20秒前
木木完成签到,获得积分20
20秒前
Ignis发布了新的文献求助10
20秒前
20秒前
我现在弱得可怕完成签到,获得积分10
22秒前
赵峰完成签到,获得积分10
23秒前
深情安青应助ShenghuiH采纳,获得10
24秒前
24秒前
一一发布了新的文献求助10
25秒前
25秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
Idoxuridine 260
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3195418
求助须知:如何正确求助?哪些是违规求助? 2844256
关于积分的说明 8049497
捐赠科研通 2508977
什么是DOI,文献DOI怎么找? 1341260
科研通“疑难数据库(出版商)”最低求助积分说明 639116
邀请新用户注册赠送积分活动 608214