SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference

计算机科学 推论 卷积神经网络 聚类分析 人工智能 可视化 计算生物学 模式识别(心理学) 数据挖掘 机器学习 生物
作者
Liqian Zhou,Xiwen Wang,Lihong Peng,Min Chen,Hong Wen
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (9) 被引量:2
标识
DOI:10.1111/jcmm.18372
摘要

Abstract Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell–cell communication (CCC) is often mediated via ligand‐receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K‐means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D‐convolutional neural networks and multi‐head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three‐point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助港岛妹妹采纳,获得10
刚刚
香蕉觅云应助qly采纳,获得10
1秒前
1秒前
埃特纳氏完成签到 ,获得积分10
2秒前
背后飞松完成签到 ,获得积分10
3秒前
4秒前
4秒前
6秒前
6秒前
guosien完成签到,获得积分10
9秒前
kingwhitewing发布了新的文献求助10
10秒前
勤劳的高山完成签到,获得积分20
11秒前
狒狒发布了新的文献求助10
11秒前
一行白鹭上青天完成签到,获得积分10
11秒前
12秒前
zhl发布了新的文献求助10
12秒前
12秒前
陈秋发布了新的文献求助10
14秒前
urochen发布了新的文献求助10
14秒前
15秒前
绿大暗发布了新的文献求助10
15秒前
Z1完成签到,获得积分10
15秒前
Jeffery发布了新的文献求助10
17秒前
852应助魏魏采纳,获得10
17秒前
天天快乐应助123采纳,获得10
19秒前
123发布了新的文献求助10
19秒前
小文殊发布了新的文献求助10
20秒前
kikiko发布了新的文献求助10
20秒前
狒狒完成签到,获得积分20
21秒前
21秒前
22秒前
23秒前
wanci应助火星天采纳,获得10
24秒前
123完成签到,获得积分10
24秒前
haha发布了新的文献求助10
25秒前
25秒前
applelpypies完成签到 ,获得积分0
26秒前
27秒前
27秒前
港岛妹妹发布了新的文献求助10
27秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3189540
求助须知:如何正确求助?哪些是违规求助? 2838865
关于积分的说明 8021970
捐赠科研通 2501733
什么是DOI,文献DOI怎么找? 1335976
科研通“疑难数据库(出版商)”最低求助积分说明 637750
邀请新用户注册赠送积分活动 605818