Efficient proton arc optimization and delivery through energy layer pre‐selection and post‐filtering

质子疗法 稳健性(进化) 能量(信号处理) 质子 计算机科学 算法 梁(结构) 物理 数学 统计 光学 化学 生物化学 量子力学 基因
作者
S. Wuyckens,Viktor Wase,Otte Marthin,Johan Sundström,Guillaume Janssens,Elena Borderias‐Villarroel,Kevin Souris,Edmond Sterpin,E. Engwall,John A. Lee
出处
期刊:Medical Physics [Wiley]
卷期号:51 (7): 4982-4995
标识
DOI:10.1002/mp.17127
摘要

Abstract Background Proton arc therapy (PAT) has emerged as a promising approach for improving dose distribution, but also enabling simpler and faster treatment delivery in comparison to conventional proton treatments. However, the delivery speed achievable in proton arc relies on dedicated algorithms, which currently do not generate plans with a clear speed‐up and sometimes even result in increased delivery time. Purpose This study aims to address the challenge of minimizing delivery time through a hybrid method combining a fast geometry‐based energy layer (EL) pre‐selection with a dose‐based EL filtering, and comparing its performance to a baseline approach without filtering. Methods Three methods of EL filtering were developed: unrestricted, switch‐up (SU), and switch‐up gap (SU gap) filtering. The unrestricted method filters the lowest weighted EL while the SU gap filtering removes the EL around a new SU to minimize the gantry rotation braking. The SU filtering removes the lowest weighted group of EL that includes a SU. These filters were combined with the RayStation dynamic proton arc optimization framework energy layer selection and spot assignment (ELSA). Four bilateral oropharyngeal and four lung cancer patients' data were used for evaluation. Objective function values, target coverage robustness, organ‐at‐risk doses and normal tissue complication probability evaluations, as well as comparisons to intensity‐modulated proton therapy (IMPT) plans, were used to assess plan quality. Results The SU gap filtering algorithm performed best in five out of the eight cases, maintaining plan quality within tolerance while reducing beam delivery time, in particular for the oropharyngeal cohort. It achieved up to approximately 22% and 15% reduction in delivery time for oropharyngeal and lung treatment sites, respectively. The unrestricted filtering algorithm followed closely. In contrast, the SU filtering showed limited improvement, suppressing one or two SU without substantial delivery time shortening. Robust target coverage was kept within 1% of variation compared to the PAT baseline plan while organs‐at‐risk doses slightly decreased or kept about the same for all patients. Conclusions This study provides insights to accelerate PAT delivery without compromising plan quality. These advancements could enhance treatment efficiency and patient throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳言2009完成签到,获得积分10
1秒前
汉堡包应助漂亮的初蓝采纳,获得10
1秒前
hohokuz发布了新的文献求助10
2秒前
莫里完成签到,获得积分10
2秒前
zxz发布了新的文献求助10
2秒前
Luyao完成签到,获得积分10
3秒前
3秒前
3秒前
马甲完成签到,获得积分10
3秒前
科研通AI5应助xdf采纳,获得10
3秒前
周周完成签到,获得积分10
3秒前
Holybot完成签到,获得积分10
3秒前
5秒前
只道寻常完成签到,获得积分10
5秒前
fleee完成签到,获得积分10
5秒前
swsx1317发布了新的文献求助10
5秒前
6秒前
雪白涵山完成签到,获得积分20
6秒前
liao完成签到 ,获得积分10
6秒前
hu970发布了新的文献求助30
6秒前
科研小白发布了新的文献求助20
7秒前
SciGPT应助白小白采纳,获得10
7秒前
shuxi完成签到,获得积分10
8秒前
liuwei发布了新的文献求助10
8秒前
yxf完成签到,获得积分20
8秒前
9秒前
十一完成签到,获得积分10
9秒前
9秒前
穆萝完成签到,获得积分10
9秒前
Jenny应助Eva采纳,获得10
9秒前
bkagyin应助17808352679采纳,获得10
9秒前
俭朴夜雪发布了新的文献求助10
10秒前
10秒前
林上草应助123采纳,获得10
10秒前
科目三应助AoiNG采纳,获得10
10秒前
11秒前
orixero应助雪白涵山采纳,获得20
11秒前
123发布了新的文献求助10
12秒前
ajing完成签到,获得积分10
12秒前
537完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762