肠道菌群
微生物代谢
新陈代谢
微生物学
生物
细菌
化学
生物化学
遗传学
作者
Willem M. de Vos,Minh Nguyen Trung,Mark Davids,Guizhen Liu,Melany Ríos-Morales,Henning J. Jessen,Dorothea Fiedler,Max Nieuwdorp,Thi Phuong Nam Bui
出处
期刊:Nature microbiology
日期:2024-06-10
卷期号:9 (7): 1812-1827
被引量:2
标识
DOI:10.1038/s41564-024-01698-7
摘要
Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits. Mitsuokella jalaludinii and Anaerostipes rhamnosivorans degrade dietary phytate via synergistic interactions in the gut to produce the beneficial short-chain fatty acid propionate.
科研通智能强力驱动
Strongly Powered by AbleSci AI