已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Feature Extraction from Raw Data for Gesture Recognition with Wearable Ultra Low-Power Ultrasound

计算机科学 可穿戴计算机 特征提取 人工智能 自编码 手势识别 模式识别(心理学) 可穿戴技术 分类器(UML) 特征(语言学) 计算机视觉 深度学习 语音识别 手势 嵌入式系统 哲学 语言学
作者
Sergei Vostrikov,Matteo Anderegg,Luca Benini,Andrea Cossettini
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:71 (7): 831-841 被引量:1
标识
DOI:10.1109/tuffc.2024.3404997
摘要

Wearable ultrasound (US) is a novel sensing approach that shows promise in multiple application domains, and specifically in hand gesture recognition (HGR). In fact, US enables to collect information from deep musculoskeletal structures at high spatiotemporal resolution and high signal-to-noise ratio, making it a perfect candidate to complement surface electromyography for improved accuracy performance and on-the-edge classification. However, existing wearable solutions for US-based gesture recognition are not sufficiently low power for continuous, long-term operation. On top of that, practical hardware limitations of wearable US devices (limited power budget, reduced wireless throughput, and restricted computational power) set the need for the compressed size of models for feature extraction and classification. To overcome these limitations, this article presents a novel end-to-end approach for feature extraction from raw musculoskeletal US data suited for edge computing, coupled with an armband for HGR based on a truly wearable (12 cm2, 9 g), ultralow-power (ULP) (16 mW) US probe. The proposed approach uses a 1-D convolutional autoencoder (CAE) to compress raw US data by 20× while preserving the main amplitude features of the envelope signal. The latent features of the autoencoder are used to train an XGBoost classifier for HGR on datasets collected with a custom US armband, considering armband removal/repositioning in between sessions. Our approach achieves a classification accuracy of 96%. Furthermore, the proposed unsupervised feature extraction approach offers generalization capabilities for intersubject use, as demonstrated by testing the pretrained encoder on a different subject and conducting posttraining analysis, revealing that the operations performed by the encoder are subject-independent. The autoencoder is also quantized to 8-bit integers and deployed on a ULP wearable US probe along with the XGBoost classifier, allowing for a gesture recognition rate ≥ 25 Hz and leading to 21% lower power consumption [at 30 frames/s (FPS)] compared to the conventional approach (raw data transmission and remote processing).

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助江洋大盗采纳,获得10
刚刚
nini完成签到 ,获得积分10
2秒前
4秒前
xu完成签到,获得积分10
7秒前
深情安青应助Vancy采纳,获得10
8秒前
8秒前
Krapanda发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助fly采纳,获得10
11秒前
可爱的函函应助meilinxu60采纳,获得10
11秒前
驭剑士发布了新的文献求助10
11秒前
12秒前
1526完成签到,获得积分10
19秒前
zyb完成签到 ,获得积分10
20秒前
22秒前
22秒前
23秒前
毛豆应助卓头OvQ采纳,获得10
24秒前
zoey应助刘zy采纳,获得10
24秒前
烟花应助Ker采纳,获得10
26秒前
Vancy发布了新的文献求助10
26秒前
27秒前
whereas完成签到 ,获得积分10
28秒前
俏皮芹发布了新的文献求助10
28秒前
asd关闭了asd文献求助
30秒前
良将何在完成签到 ,获得积分10
30秒前
一杯六一完成签到,获得积分10
30秒前
流星完成签到,获得积分10
32秒前
T012发布了新的文献求助10
32秒前
38秒前
宫城发布了新的文献求助20
38秒前
38秒前
vippp完成签到 ,获得积分10
39秒前
42秒前
611完成签到,获得积分10
43秒前
佩奇发布了新的文献求助10
44秒前
hobowei完成签到 ,获得积分10
45秒前
加顿土豆发布了新的文献求助10
45秒前
47秒前
FG完成签到,获得积分10
47秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417307
求助须知:如何正确求助?哪些是违规求助? 3018940
关于积分的说明 8886010
捐赠科研通 2706400
什么是DOI,文献DOI怎么找? 1484278
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110