Real‐time quantitative detection of hydrocolloid adulteration in meat based on Swin Transformer and smartphone

计算机科学 卡拉胶 食品科学 化学
作者
Zhenchang Gao,Shanshan Chen,Jinxian Huang,Honghao Cai
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4359-4371 被引量:1
标识
DOI:10.1111/1750-3841.17159
摘要

Abstract Hydrocolloids are widely used in meat products as common food additives. However, research has indicated that excessive consumption of these hydrocolloids may have potential health implications. Currently, consumers mainly rely on sensory evaluation to identify hydrocolloid adulteration in meat products. Although many studies on quantitative detection of hydrocolloids have been conducted by biochemical methods in laboratory environments, there is currently a lack of effective tools for consumers and regulators to obtain real‐time and reliable information on hydrocolloid adulteration. To address this challenge, a smartphone‐based computer vision method was developed to quantitatively detect carrageenan adulteration in beef in this work. Specifically, Swin Transformer models, along with pre‐training and fine‐tuning techniques, were used to successfully automate the classification of beef into nine different levels of carrageenan adulteration, ranging from 0% to 20%. Among the tested models, Swin‐Tiny (Swin‐T) achieved the highest trade‐off performance, with a Top‐1 accuracy of 0.997, a detection speed of 3.2 ms, and a model size of 103.45 Mb. Compared to computer vision, the electrochemical impedance spectroscopy achieved a lower accuracy of 0.792 and required a constant temperature environment and a waiting time of around 30 min for data stabilization. In addition, Swin‐T model was also capable of distinguishing between different types of hydrocolloids with a Top‐1 accuracy of 0.975. This study provides consumers and regulators with a valuable tool to obtain real‐time quantitative information about meat adulteration anytime, anywhere. Practical Application This research provides a practical solution for regulators and consumers to non‐destructively and quantitatively detect the content and type of hydrocolloids in beef in real‐time using smartphones. This innovation has the potential to significantly reduce the costs associated with meat quality testing, such as the use of chemical reagents and expensive instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大炮台发布了新的文献求助10
1秒前
稳重的蜜蜂完成签到,获得积分10
1秒前
ANTianxu完成签到 ,获得积分10
1秒前
充电宝应助~~采纳,获得10
1秒前
shuan发布了新的文献求助30
2秒前
inshialla完成签到 ,获得积分10
4秒前
张章发布了新的文献求助10
4秒前
5秒前
6秒前
Orange应助月亮是甜的采纳,获得10
6秒前
结实的妙梦完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
9秒前
11秒前
真知灼见关注了科研通微信公众号
11秒前
Mess完成签到 ,获得积分10
12秒前
12秒前
12秒前
Olivia完成签到,获得积分10
13秒前
13秒前
张章完成签到,获得积分20
13秒前
Blummer发布了新的文献求助10
13秒前
小马发布了新的文献求助10
14秒前
整齐新儿发布了新的文献求助10
14秒前
自然的真发布了新的文献求助10
14秒前
hcq完成签到 ,获得积分20
14秒前
16秒前
16秒前
17秒前
大侠发布了新的文献求助10
17秒前
18秒前
三金发布了新的文献求助10
18秒前
万能毒药完成签到 ,获得积分10
19秒前
乐乐应助整齐新儿采纳,获得10
19秒前
Wdwpp发布了新的文献求助10
19秒前
19秒前
传奇3应助小马采纳,获得10
19秒前
开放的斌发布了新的文献求助10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644