Design and optimization of near-field thermophotovoltaic systems using deep learning

热光电伏打 领域(数学) 计算机科学 航空航天工程 环境科学 工程物理 工程类 电气工程 光伏系统 数学 纯数学
作者
Ambali Alade Odebowale,Khalil As’ham,Haroldo T. Hattori,Andrey E. Miroshnichenko
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6) 被引量:4
标识
DOI:10.1103/physrevapplied.21.064031
摘要

Extensive research has been conducted on near-field radiative heat transfer (NFRHT) due to its wide range of applications in energy conversion, radiative cooling, and thermal diodes. The main objective of studying NFRHT at the nanoscale gap is to enhance system performance. This research proposes a new approach to designing and optimizing a near-field thermophotovoltaic (NFTPV) system using deep-learning techniques. Our study utilizes a fully connected network (FCN) and an automated-machine-learning (AutoML) model to simulate radiative heat transfer, aiming to improve radiative heat flux, power generation, and overall system efficiency. By comparing two emitter configurations, we find that the hyperbolic emitter outperforms other configurations, as evidenced by its impact on various system-performance parameters. Significant achievements have been made through our investigations. For the $\mathrm{Si}\mathrm{C}$-plate emitter configuration, we have achieved a notable power density of $0.589\phantom{\rule{0.2em}{0ex}}\mathrm{W}/{\mathrm{cm}}^{2}$ and an efficiency of 23% after accounting for nonradiative recombination at a temperature difference of 600 K with a 100-nm gap. Moreover, the four-period emitter configuration has yielded even more impressive results, with a power density of $0.9452\phantom{\rule{0.2em}{0ex}}\mathrm{W}/{\mathrm{cm}}^{2}$ and an efficiency of 30% after accounting for nonradiative recombination. This study demonstrates the immense potential of utilizing FCN and AutoML for theoretical modeling and optimization of structural parameters in NFTPV systems, as well as providing an accurate model for predicting photocurrent generation. By highlighting the capabilities of these advanced techniques, we have hopefully paved the way for further advancements and innovations in NFRHT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温水完成签到 ,获得积分10
刚刚
流川枫发布了新的文献求助10
刚刚
hyades完成签到,获得积分10
1秒前
XU完成签到,获得积分10
1秒前
hileborn完成签到,获得积分10
1秒前
善良友安发布了新的文献求助10
1秒前
xiaoxiao发布了新的文献求助10
2秒前
ED应助lucifer0922采纳,获得10
2秒前
cc发布了新的文献求助10
3秒前
斯文败类应助笑点低的不采纳,获得10
3秒前
冰216完成签到,获得积分10
3秒前
飘逸鸵鸟发布了新的文献求助10
4秒前
4秒前
闫富扬完成签到,获得积分20
4秒前
5秒前
开心完成签到 ,获得积分10
5秒前
qccccc发布了新的文献求助10
5秒前
搜集达人应助慈祥的翠梅采纳,获得10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
忧心的寄松完成签到,获得积分10
7秒前
沉默的宛筠应助Star1983采纳,获得10
8秒前
zhishiyumi完成签到,获得积分10
8秒前
Elaine完成签到 ,获得积分10
8秒前
小小完成签到,获得积分10
9秒前
9秒前
坚强跳跳糖完成签到,获得积分10
9秒前
NexusExplorer应助danxue采纳,获得10
10秒前
闫富扬发布了新的文献求助10
10秒前
嗖一下十分爽完成签到,获得积分10
10秒前
乔七发布了新的文献求助10
10秒前
11秒前
11秒前
菠萝完成签到 ,获得积分10
11秒前
11秒前
852应助DX120210165采纳,获得30
11秒前
Bao完成签到 ,获得积分10
11秒前
weiyi发布了新的文献求助10
11秒前
年轻的笙完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582