清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Design and optimization of near-field thermophotovoltaic systems using deep learning

热光电伏打 领域(数学) 计算机科学 航空航天工程 环境科学 工程物理 工程类 电气工程 光伏系统 数学 纯数学
作者
Ambali Alade Odebowale,Khalil As’ham,Haroldo T. Hattori,Andrey E. Miroshnichenko
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6) 被引量:4
标识
DOI:10.1103/physrevapplied.21.064031
摘要

Extensive research has been conducted on near-field radiative heat transfer (NFRHT) due to its wide range of applications in energy conversion, radiative cooling, and thermal diodes. The main objective of studying NFRHT at the nanoscale gap is to enhance system performance. This research proposes a new approach to designing and optimizing a near-field thermophotovoltaic (NFTPV) system using deep-learning techniques. Our study utilizes a fully connected network (FCN) and an automated-machine-learning (AutoML) model to simulate radiative heat transfer, aiming to improve radiative heat flux, power generation, and overall system efficiency. By comparing two emitter configurations, we find that the hyperbolic emitter outperforms other configurations, as evidenced by its impact on various system-performance parameters. Significant achievements have been made through our investigations. For the $\mathrm{Si}\mathrm{C}$-plate emitter configuration, we have achieved a notable power density of $0.589\phantom{\rule{0.2em}{0ex}}\mathrm{W}/{\mathrm{cm}}^{2}$ and an efficiency of 23% after accounting for nonradiative recombination at a temperature difference of 600 K with a 100-nm gap. Moreover, the four-period emitter configuration has yielded even more impressive results, with a power density of $0.9452\phantom{\rule{0.2em}{0ex}}\mathrm{W}/{\mathrm{cm}}^{2}$ and an efficiency of 30% after accounting for nonradiative recombination. This study demonstrates the immense potential of utilizing FCN and AutoML for theoretical modeling and optimization of structural parameters in NFTPV systems, as well as providing an accurate model for predicting photocurrent generation. By highlighting the capabilities of these advanced techniques, we have hopefully paved the way for further advancements and innovations in NFRHT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助要减肥中蓝采纳,获得10
13秒前
19秒前
21秒前
ukmy发布了新的文献求助10
25秒前
AZN完成签到 ,获得积分10
32秒前
ukmy发布了新的文献求助10
1分钟前
NexusExplorer应助ukmy采纳,获得10
1分钟前
简单十三完成签到,获得积分10
1分钟前
1分钟前
朱一龙完成签到,获得积分10
1分钟前
1分钟前
zhanzhanzhan完成签到,获得积分10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助忧郁的火车采纳,获得10
2分钟前
领导范儿应助忧郁的火车采纳,获得10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
2分钟前
ukmy完成签到,获得积分20
2分钟前
ukmy发布了新的文献求助10
2分钟前
ww完成签到,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
滨滨发布了新的文献求助10
4分钟前
Lucas应助十分十分佳采纳,获得10
5分钟前
烟花应助童严柯采纳,获得10
5分钟前
456完成签到,获得积分10
5分钟前
hwen1998发布了新的文献求助10
5分钟前
h0jian09完成签到,获得积分10
5分钟前
5分钟前
是是是完成签到 ,获得积分10
5分钟前
5分钟前
hwen1998完成签到 ,获得积分10
5分钟前
5分钟前
童严柯发布了新的文献求助10
6分钟前
6分钟前
juan完成签到 ,获得积分10
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
科研通AI5应助要减肥中蓝采纳,获得10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065519
求助须知:如何正确求助?哪些是违规求助? 4288108
关于积分的说明 13359637
捐赠科研通 4106884
什么是DOI,文献DOI怎么找? 2248899
邀请新用户注册赠送积分活动 1254411
关于科研通互助平台的介绍 1186179