已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Semi-supervised Four-Chamber Echocardiographic Video Segmentation Algorithm Based on Multilevel Edge Perception and Calibration Fusion

分割 计算机科学 人工智能 噪音(视频) 模式识别(心理学) 校准 心内膜 特征(语言学) GSM演进的增强数据速率 计算机视觉 图像(数学) 数学 医学 哲学 内科学 统计 语言学
作者
Yuexin Wan,Dandan Li,Zhi Li,Jie Bu,Mutian Tong,Ruwei Luo,Babobiao Yue,Shan Fa Yu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (9): 1308-1317
标识
DOI:10.1016/j.ultrasmedbio.2024.04.013
摘要

Objective Echocardiographic videos are commonly used for automatic semantic segmentation of endocardium, which is crucial in evaluating cardiac function and assisting doctors to make accurate diagnoses of heart disease. However, this task faces two distinct challenges: one is the edge blurring, which is caused by the presence of speckle noise or excessive de-noising operation, and the other is the lack of an effective feature fusion approach for multilevel features for obtaining accurate endocardium. Methods In this study, a deep learning model, based on multilevel edge perception and calibration fusion is proposed to improve the segmentation performance. First, a multilevel edge perception module is proposed to comprehensively extract edge features through both a detail branch and a semantic branch to alleviate the adverse impact of noise. Second, a calibration fusion module is proposed that calibrates and integrates various features, including semantic and detailed information, to maximize segmentation performance. Furthermore, the features obtained from the calibration fusion module are stored by using a memory architecture to achieve semi-supervised segmentation through both labeled and unlabeled data. Results Our method is evaluated on two public echocardiography video data sets, achieving average Dice coefficients of 93.05% and 93.93%, respectively. Additionally, we validated our method on a local hospital clinical data set, achieving a Pearson correlation of 0.765 for predicting left ventricular ejection fraction. Conclusion The proposed model effectively solves the challenges encountered in echocardiography by using semi-supervised networks, thereby improving the segmentation accuracy of the ventricles. This indicates that the proposed model can assist cardiologists in obtaining accurate and effective research and diagnostic results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sesenta1发布了新的文献求助10
刚刚
刚刚
卡拉蹦蹦完成签到 ,获得积分10
2秒前
2秒前
yf完成签到 ,获得积分10
3秒前
kobeycc发布了新的文献求助30
3秒前
Hello应助cfplhys采纳,获得10
6秒前
7秒前
8秒前
星辰大海应助豆子采纳,获得10
10秒前
kobeycc完成签到,获得积分10
11秒前
小双发布了新的文献求助10
12秒前
lotus完成签到,获得积分10
15秒前
16秒前
jeep先生完成签到,获得积分10
19秒前
徐芳菲完成签到 ,获得积分10
22秒前
Zaleily完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
李爱国应助和谐的绮南采纳,获得10
27秒前
吴泽斌发布了新的文献求助10
28秒前
Akim应助科研小白采纳,获得10
29秒前
hp发布了新的文献求助20
29秒前
xiaoding应助芝吱芝吱采纳,获得10
29秒前
31秒前
搁浅发布了新的文献求助10
31秒前
白青发布了新的文献求助10
33秒前
syz发布了新的文献求助30
37秒前
吴泽斌完成签到,获得积分10
37秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
上官若男应助科研通管家采纳,获得150
38秒前
慕青应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
wub完成签到 ,获得积分10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727