菌丝
土壤碳
化学
外生菌根
菌根
沉积(地质)
园艺
植物
共生
生物
土壤水分
生态学
古生物学
遗传学
细菌
沉积物
作者
Yuanshuang Yuan,Yicong Yin,Bartosz Adamczyk,Di Liang,Dapeng Gu,Guowei Xia,Jianli Zhang,Ziliang Zhang
标识
DOI:10.1016/j.soilbio.2024.109471
摘要
Plant belowground carbon (C) inputs from roots and associated mycorrhizal hyphae are increasingly recognized as critical drivers impacting soil organic C (SOC) pool. However, whether roots and mycorrhizal hyphae differentially regulate SOC formation and accumulation under elevated nitrogen (N) deposition remains to be addressed. Using an ingrowth-core technique, the relative contributions of roots and mycorrhizal hyphae to SOC accumulation were distinguished and quantified in a karst forest receiving three levels of N additions (control (0 kg N ha-1 yr-1), low N (150 kg N ha-1 yr-1) and high N (300 kg N ha-1 yr-1)). Our results showed that N addition stimulated SOC accumulation (indicated by the increase of both bulk SOC and mineral associated organic C fraction) influenced by both roots and hyphae, especially for higher N doses. Moreover, N addition increased the contribution of the root effect relative to the hyphal effect in the SOC accrual. The correlation analysis showed that, for the hyphal effect, the change in SOC content was solely and positively correlated with the change in protective mineral phases of SOC, but not with the microbial necromass. In contrast, for the root effect, the change in SOC content was significantly and positively correlated with the changes in both soil microbial C pump efficacy and protective mineral phases of SOC. These results suggest that roots and mycorrhizal hyphae may influence the accumulation of microbial necromass and the formation of mineral-organic associations in a different magnitude under enhanced N supply. These findings advance our understanding of the root-mycorrhizal interactions in mediating SOC dynamics in forests under future N deposition scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI