Prediction of Transcription Factor Binding Sites on Cell-Free DNA Based on Deep Learning

转录因子 计算生物学 DNA结合位点 调节顺序 鉴定(生物学) 结合位点 计算机科学 生物 遗传学 基因 发起人 基因表达 植物
作者
Ting Qi,Ying Zhou,Yuqi Sheng,Zhihui Li,Yuwei Yang,Quanjun Liu,Qinyu Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4002-4008
标识
DOI:10.1021/acs.jcim.4c00047
摘要

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wb完成签到,获得积分10
1秒前
Vaying完成签到 ,获得积分10
2秒前
科研狗仔队完成签到,获得积分10
2秒前
2秒前
爱太阳的阿喵完成签到,获得积分10
2秒前
英姑应助三块石头采纳,获得10
3秒前
小赵完成签到,获得积分10
4秒前
小马甲应助Jeffy采纳,获得10
5秒前
哪吒大闹小布丁完成签到,获得积分10
6秒前
6秒前
大气新烟完成签到 ,获得积分10
6秒前
6秒前
ybsun发布了新的文献求助10
6秒前
斯文败类应助zly采纳,获得10
7秒前
7秒前
东方琉璃完成签到,获得积分10
8秒前
失眠的耳机完成签到,获得积分10
9秒前
sjyu1985完成签到 ,获得积分10
11秒前
凪白完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
KTKT发布了新的文献求助10
12秒前
充电宝应助Lawliet采纳,获得10
12秒前
13秒前
Jenny发布了新的文献求助10
15秒前
田様应助谢天赐采纳,获得10
16秒前
17秒前
顾陌完成签到,获得积分10
17秒前
魈玖发布了新的文献求助10
17秒前
18秒前
共享精神应助xumengjiao采纳,获得10
18秒前
18秒前
Jeffy完成签到,获得积分10
19秒前
安卉关注了科研通微信公众号
19秒前
喜悦的尔阳完成签到,获得积分10
19秒前
Anguslyx发布了新的文献求助10
20秒前
霸气的金鱼完成签到,获得积分10
20秒前
深情芷完成签到,获得积分10
20秒前
傻大完成签到,获得积分10
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074861
求助须知:如何正确求助?哪些是违规求助? 2728212
关于积分的说明 7502977
捐赠科研通 2376311
什么是DOI,文献DOI怎么找? 1259944
科研通“疑难数据库(出版商)”最低求助积分说明 610771
版权声明 597101