Prediction of Transcription Factor Binding Sites on Cell-Free DNA Based on Deep Learning

转录因子 计算生物学 DNA结合位点 调节顺序 鉴定(生物学) 结合位点 计算机科学 生物 遗传学 基因 发起人 基因表达 植物
作者
Ting Qi,Ying Zhou,Yuqi Sheng,Zhihui Li,Yuwei Yang,Quanjun Liu,Qinyu Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4002-4008
标识
DOI:10.1021/acs.jcim.4c00047
摘要

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助西子阳采纳,获得10
刚刚
李健的小迷弟应助Manta采纳,获得10
2秒前
lelele发布了新的文献求助10
2秒前
518完成签到,获得积分10
2秒前
Rondab应助VvV采纳,获得10
2秒前
2秒前
阔达的惠完成签到,获得积分10
3秒前
Pig-prodigy完成签到,获得积分10
3秒前
桃李完成签到,获得积分10
4秒前
4秒前
大模型应助一个采纳,获得10
4秒前
动听书雁发布了新的文献求助10
5秒前
5秒前
5秒前
丘比特应助lulu采纳,获得10
5秒前
6秒前
betty孙发布了新的文献求助10
7秒前
7秒前
王媛完成签到,获得积分10
8秒前
Orange应助无限百川采纳,获得10
9秒前
伯云完成签到,获得积分10
10秒前
yang发布了新的文献求助10
10秒前
青山完成签到,获得积分10
10秒前
lz12345发布了新的文献求助10
10秒前
机灵安白完成签到,获得积分10
11秒前
恋雅颖月应助动听书雁采纳,获得10
12秒前
12秒前
Yuchia应助易达采纳,获得10
13秒前
卖报的小火柴完成签到,获得积分20
14秒前
15秒前
哈皮完成签到,获得积分20
15秒前
yang完成签到,获得积分10
16秒前
李健的小迷弟应助西子阳采纳,获得10
16秒前
17秒前
王十发布了新的文献求助10
18秒前
安静代萱完成签到 ,获得积分10
18秒前
OUDIE完成签到,获得积分10
19秒前
HiDasiy完成签到 ,获得积分10
20秒前
哈哈哈发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061