Machine Learning-assisted Nanosensor Arrays: An Efficiently High-Throughput Food Detection Analysis

纳米传感器 吞吐量 计算机科学 人工智能 机器学习 纳米技术 材料科学 电信 无线
作者
Yuechun Li,Wenrui Zhang,Zhaowen Cui,Longhua Shi,Yiwen Shang,Yanwei Ji,Wang Jianlong
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:149: 104564-104564 被引量:1
标识
DOI:10.1016/j.tifs.2024.104564
摘要

How to timely identify the food quality through a low-cost, easy operation, and high-throughput way is a milestone protects for food industry, especially in resource-limited area. Nanosensors by integrating with biomolecules (such as antibodies and aptamers) have emerged substitutes for the standard equipment analysis in the large-scale screening. However, the expensive cost of biomolecules, the "lock-key" combination unable to solve some problems (such as food freshness), and emerging food risks have strictly their development in food industry. Additionally, nanosensors without biomolecules are easily suffered from the non-specific interference, making the detection results unreliable. Therefore, some studies have concentrated on the sensor array by using nanomaterials as receptors to solving abovementioned problems, which is based on the multiple signal responses to generate the distinctive fingerprint for each analyte. This review comprehensively discussed the machine learning-assisted nanosensor arrays for the efficiently high-throughput food detection analysis, which mainly concludes candidates for nanosensor arrays, commonly used machine learning algorithms, and the application in food applications (such as foodborne hazards, food components, food freshness, food origin, and food adulteration). Additionally, we have proposed the challenges and prospects of machine learning-assisted nanosensor arrays in food applications to bridge the gap of current development bottleneck. Therefore, machine learning-assisted nanosensor arrays for the efficient high-throughput detection analysis in food industry are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hmx完成签到,获得积分10
刚刚
大橙子发布了新的文献求助10
刚刚
1秒前
爱听歌的靖儿完成签到,获得积分10
4秒前
Pytong发布了新的文献求助10
6秒前
7秒前
liaosy26完成签到,获得积分10
9秒前
自觉的初阳完成签到,获得积分10
9秒前
12秒前
13秒前
闪闪惜天完成签到,获得积分10
13秒前
大橙子完成签到,获得积分10
13秒前
机灵冰珍关注了科研通微信公众号
16秒前
王小头要查文献完成签到,获得积分10
16秒前
坚定幻嫣完成签到 ,获得积分10
17秒前
Fred Guan应助科科采纳,获得100
18秒前
韭菜盒子发布了新的文献求助10
19秒前
脑洞疼应助马婧芸采纳,获得10
23秒前
溪鱼完成签到,获得积分10
23秒前
24秒前
温柔寄文完成签到,获得积分10
24秒前
Tacamily完成签到,获得积分10
27秒前
十斤芒果关注了科研通微信公众号
28秒前
Maths发布了新的文献求助30
28秒前
科研通AI2S应助韭菜盒子采纳,获得10
29秒前
不配.应助韭菜盒子采纳,获得10
29秒前
丘比特应助韭菜盒子采纳,获得10
29秒前
这不得行完成签到 ,获得积分10
30秒前
30秒前
哇哒西蛙发布了新的文献求助10
32秒前
kingwhitewing完成签到,获得积分10
32秒前
薄荷完成签到,获得积分10
33秒前
友好亚男完成签到 ,获得积分10
33秒前
airsh发布了新的文献求助10
34秒前
VDC发布了新的文献求助30
35秒前
37秒前
39秒前
端庄的未来完成签到,获得积分10
39秒前
zjq完成签到,获得积分10
39秒前
XCY发布了新的文献求助10
40秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043