Labour-saving detection of hybrid rice rows at the pollination stage based on a multi-perturbed semi-supervised model

过度拟合 人工智能 计算机科学 瓶颈 分割 机器学习 精准农业 模式识别(心理学) 人工神经网络 数据库 农业 生态学 生物 嵌入式系统
作者
Dongfang Li,Boliao Li,Huaiqu Feng,Te Xi,Jun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107942-107942 被引量:3
标识
DOI:10.1016/j.compag.2023.107942
摘要

Autonomous navigation of the hybrid rice pollination process is essential to increasing seed production. Detecting crop rows in real-time with flexible and cost-effective machine vision equipment is crucial to achieving autonomous navigation. The use of deep learning-based models has proven effective in crop row detection. However, training such models is highly dependent on manually finely annotated image data, which becomes a bottleneck that hinders their practical application and improvement of crop row detection accuracy. This study proposed a multi-perturbed semi-supervised learning-based model to enhance the semantic segmentation performance of hybrid rice regions by mining valuable information from easily accessible unlabelled images. The input data perturbation and network perturbation developed effectively alleviated the overfitting and teacher-student weight coupling issues when applying semi-supervised models to the hybrid rice image dataset with high content similarity. Navigation centrelines were obtained by post-processing the segmentation masks of the crop regions. Under a 1/2 partition protocol of labelled and unlabelled images, the semantic segmentation performance of the proposed approach achieved a mean intersection over union (mIoU) of 0.887, outperformed its supervised baseline (DeepLabv3+ ) and original model (mean teacher) by 1.8% and 4.1%, respectively. 82.38% of the crop row were accurately detected using the proposed model, demonstrating an improvement of 3.04% and 14.06% over its baseline and the original model, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jzhang应助丙队长采纳,获得10
刚刚
1秒前
GXY发布了新的文献求助30
2秒前
Lucas应助专注秋尽采纳,获得10
2秒前
2秒前
754完成签到,获得积分10
2秒前
5秒前
学习猴发布了新的文献求助10
5秒前
充电宝应助炙热的如柏采纳,获得10
6秒前
所所应助qzaima采纳,获得10
6秒前
米兰达完成签到 ,获得积分0
7秒前
xg发布了新的文献求助10
9秒前
Loooong应助Ni采纳,获得10
10秒前
10秒前
WZ0904发布了新的文献求助10
10秒前
顾矜应助博ge采纳,获得10
12秒前
12秒前
Lotus发布了新的文献求助10
13秒前
14秒前
仁爱仙人掌完成签到,获得积分10
16秒前
ywang发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
ewqw关注了科研通微信公众号
19秒前
曦小蕊完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
奋斗灵波发布了新的文献求助10
21秒前
药学牛马发布了新的文献求助10
21秒前
21秒前
科研通AI5应助WZ0904采纳,获得10
22秒前
叶未晞yi发布了新的文献求助10
23秒前
ipeakkka发布了新的文献求助10
24秒前
Jzhang应助迷人的映雁采纳,获得10
24秒前
24秒前
zzz完成签到,获得积分10
25秒前
25秒前
小安发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824