已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Labour-saving detection of hybrid rice rows at the pollination stage based on a multi-perturbed semi-supervised model

过度拟合 人工智能 计算机科学 瓶颈 分割 机器学习 精准农业 模式识别(心理学) 人工神经网络 数据库 农业 生态学 生物 嵌入式系统
作者
Dongfang Li,Boliao Li,Huaiqu Feng,Te Xi,Jun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 107942-107942 被引量:3
标识
DOI:10.1016/j.compag.2023.107942
摘要

Autonomous navigation of the hybrid rice pollination process is essential to increasing seed production. Detecting crop rows in real-time with flexible and cost-effective machine vision equipment is crucial to achieving autonomous navigation. The use of deep learning-based models has proven effective in crop row detection. However, training such models is highly dependent on manually finely annotated image data, which becomes a bottleneck that hinders their practical application and improvement of crop row detection accuracy. This study proposed a multi-perturbed semi-supervised learning-based model to enhance the semantic segmentation performance of hybrid rice regions by mining valuable information from easily accessible unlabelled images. The input data perturbation and network perturbation developed effectively alleviated the overfitting and teacher-student weight coupling issues when applying semi-supervised models to the hybrid rice image dataset with high content similarity. Navigation centrelines were obtained by post-processing the segmentation masks of the crop regions. Under a 1/2 partition protocol of labelled and unlabelled images, the semantic segmentation performance of the proposed approach achieved a mean intersection over union (mIoU) of 0.887, outperformed its supervised baseline (DeepLabv3+ ) and original model (mean teacher) by 1.8% and 4.1%, respectively. 82.38% of the crop row were accurately detected using the proposed model, demonstrating an improvement of 3.04% and 14.06% over its baseline and the original model, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妖哥完成签到,获得积分10
刚刚
刚刚
3秒前
七色光完成签到,获得积分10
3秒前
fsznc完成签到 ,获得积分0
3秒前
淡淡凡阳发布了新的文献求助10
4秒前
里里完成签到 ,获得积分10
4秒前
5秒前
彩色的翡翠完成签到,获得积分10
5秒前
成就书雪完成签到,获得积分0
6秒前
俭朴山灵完成签到 ,获得积分10
7秒前
勤耕苦读完成签到,获得积分10
8秒前
10秒前
啵啵小甜狗完成签到,获得积分10
10秒前
10秒前
无畏发布了新的文献求助10
11秒前
天天快乐应助哈哈哈哈哈采纳,获得30
11秒前
11秒前
linshaoyu发布了新的文献求助10
15秒前
玖玖发布了新的文献求助10
15秒前
15秒前
沉默白猫完成签到 ,获得积分10
16秒前
饕餮1235完成签到,获得积分10
17秒前
共享精神应助鹿不可采纳,获得10
17秒前
小马甲应助舒适静丹采纳,获得10
17秒前
无花果应助无畏采纳,获得10
18秒前
呆梨医生发布了新的文献求助10
18秒前
shuaiBsen完成签到,获得积分10
19秒前
吃道格的恺特完成签到 ,获得积分10
19秒前
默默的甜瓜完成签到,获得积分10
20秒前
蒹葭苍苍完成签到 ,获得积分10
22秒前
酷酷的涵蕾完成签到 ,获得积分10
22秒前
暗号完成签到 ,获得积分0
22秒前
JamesPei应助高兴的万宝路采纳,获得10
23秒前
Oculus完成签到 ,获得积分10
23秒前
笑点低的悒完成签到 ,获得积分10
24秒前
活力的仙人掌完成签到,获得积分20
24秒前
任虎完成签到,获得积分10
24秒前
25秒前
冷静的访天完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934895
求助须知:如何正确求助?哪些是违规求助? 4202593
关于积分的说明 13057993
捐赠科研通 3977141
什么是DOI,文献DOI怎么找? 2179362
邀请新用户注册赠送积分活动 1195516
关于科研通互助平台的介绍 1106915