Labour-saving detection of hybrid rice rows at the pollination stage based on a multi-perturbed semi-supervised model

过度拟合 人工智能 计算机科学 瓶颈 分割 机器学习 精准农业 模式识别(心理学) 人工神经网络 数据库 农业 生态学 生物 嵌入式系统
作者
Dongfang Li,Boliao Li,Huaiqu Feng,Te Xi,Jun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107942-107942 被引量:3
标识
DOI:10.1016/j.compag.2023.107942
摘要

Autonomous navigation of the hybrid rice pollination process is essential to increasing seed production. Detecting crop rows in real-time with flexible and cost-effective machine vision equipment is crucial to achieving autonomous navigation. The use of deep learning-based models has proven effective in crop row detection. However, training such models is highly dependent on manually finely annotated image data, which becomes a bottleneck that hinders their practical application and improvement of crop row detection accuracy. This study proposed a multi-perturbed semi-supervised learning-based model to enhance the semantic segmentation performance of hybrid rice regions by mining valuable information from easily accessible unlabelled images. The input data perturbation and network perturbation developed effectively alleviated the overfitting and teacher-student weight coupling issues when applying semi-supervised models to the hybrid rice image dataset with high content similarity. Navigation centrelines were obtained by post-processing the segmentation masks of the crop regions. Under a 1/2 partition protocol of labelled and unlabelled images, the semantic segmentation performance of the proposed approach achieved a mean intersection over union (mIoU) of 0.887, outperformed its supervised baseline (DeepLabv3+ ) and original model (mean teacher) by 1.8% and 4.1%, respectively. 82.38% of the crop row were accurately detected using the proposed model, demonstrating an improvement of 3.04% and 14.06% over its baseline and the original model, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只如初完成签到,获得积分10
3秒前
7秒前
瀚子完成签到,获得积分10
7秒前
小小雪完成签到 ,获得积分10
7秒前
7秒前
00完成签到 ,获得积分10
9秒前
lalala发布了新的文献求助10
10秒前
肿瘤克星发布了新的文献求助10
12秒前
13秒前
lzb发布了新的文献求助10
19秒前
23秒前
29秒前
LHP完成签到,获得积分10
32秒前
wuhen完成签到,获得积分10
33秒前
我是老大应助一二采纳,获得10
33秒前
窝窝头完成签到 ,获得积分10
33秒前
YUMI发布了新的文献求助10
35秒前
玩儿完成签到,获得积分10
36秒前
桐桐应助甘地采纳,获得10
42秒前
陈乔完成签到,获得积分10
43秒前
七叶树完成签到,获得积分10
44秒前
13504544355完成签到 ,获得积分10
45秒前
49秒前
江峰发布了新的文献求助10
49秒前
俊逸的问薇完成签到 ,获得积分10
50秒前
缓慢的冬云完成签到,获得积分10
55秒前
甘地发布了新的文献求助10
55秒前
YYA完成签到 ,获得积分10
56秒前
和谐亦瑶完成签到,获得积分10
59秒前
上官若男应助江峰采纳,获得10
1分钟前
Cupid完成签到,获得积分10
1分钟前
小丑鱼儿完成签到 ,获得积分10
1分钟前
guangyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助晓晓晓采纳,获得10
1分钟前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
锋芒不毕露完成签到,获得积分10
1分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3278732
求助须知:如何正确求助?哪些是违规求助? 2917082
关于积分的说明 8384711
捐赠科研通 2587945
什么是DOI,文献DOI怎么找? 1409790
科研通“疑难数据库(出版商)”最低求助积分说明 657531
邀请新用户注册赠送积分活动 638558