Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence

脑电图 口译(哲学) 人工智能 计算机科学 心理学 神经科学 程序设计语言
作者
Jesper Tveit,Harald Aurlien,Sergey M. Plis,Vince D. Calhoun,William O. Tatum,Donald L. Schomer,Vibeke Arntsen,F. M. Cox,Firas Fahoum,William Gallentine,Elena Gardella,Cecil D. Hahn,Aatif M. Husain,Sudha Kilaru Kessler,Mustafa Aykut Kural,Fábio A. Nascimento,Hatice Tankişi,Line Bédos Ulvin,Richard Wennberg,Sándor Beniczky
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:80 (8): 805-805 被引量:130
标识
DOI:10.1001/jamaneurol.2023.1645
摘要

Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretation such as distinguishing abnormal from normal or identifying epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based on AI suitable for clinical practice is needed. To develop and validate an AI model (Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal from normal EEG recordings and to classify abnormal EEG recordings into categories relevant for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse. In this multicenter diagnostic accuracy study, a convolutional neural network model, SCORE-AI, was developed and validated using EEGs recorded between 2014 and 2020. Data were analyzed from January 17, 2022, until November 14, 2022. A total of 30 493 recordings of patients referred for EEG were included into the development data set annotated by 17 experts. Patients aged more than 3 months and not critically ill were eligible. The SCORE-AI was validated using 3 independent test data sets: a multicenter data set of 100 representative EEGs evaluated by 11 experts, a single-center data set of 9785 EEGs evaluated by 14 experts, and for benchmarking with previously published AI models, a data set of 60 EEGs with external reference standard. No patients who met eligibility criteria were excluded. Diagnostic accuracy, sensitivity, and specificity compared with the experts and the external reference standard of patients' habitual clinical episodes obtained during video-EEG recording. The characteristics of the EEG data sets include development data set (N = 30 493; 14 980 men; median age, 25.3 years [95% CI, 1.3-76.2 years]), multicenter test data set (N = 100; 61 men, median age, 25.8 years [95% CI, 4.1-85.5 years]), single-center test data set (N = 9785; 5168 men; median age, 35.4 years [95% CI, 0.6-87.4 years]), and test data set with external reference standard (N = 60; 27 men; median age, 36 years [95% CI, 3-75 years]). The SCORE-AI achieved high accuracy, with an area under the receiver operating characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities, and performance similar to human experts. Benchmarking against 3 previously published AI models was limited to comparing detection of epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was significantly higher than the 3 previously published models (P < .001) and similar to human experts. In this study, SCORE-AI achieved human expert level performance in fully automated interpretation of routine EEGs. Application of SCORE-AI may improve diagnosis and patient care in underserved areas and improve efficiency and consistency in specialized epilepsy centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助phil采纳,获得10
刚刚
Jun发布了新的文献求助10
1秒前
1秒前
桀庚发布了新的文献求助10
1秒前
1秒前
可意完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Momo发布了新的文献求助10
3秒前
朴素的松完成签到,获得积分10
3秒前
情怀应助死亦生矣采纳,获得10
3秒前
wangyuchen发布了新的文献求助10
3秒前
4秒前
4秒前
龙牙发布了新的文献求助10
4秒前
无辜的含之完成签到,获得积分10
5秒前
列娜完成签到,获得积分10
5秒前
wangg发布了新的文献求助10
6秒前
Katrimelody发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
搜集达人应助hht采纳,获得10
6秒前
7秒前
丘比特应助科研人采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
嗯哼完成签到,获得积分10
7秒前
kkyy完成签到,获得积分20
8秒前
甜菜发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
9秒前
pxd完成签到,获得积分10
9秒前
9秒前
chenping_an完成签到,获得积分10
9秒前
BPM完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928