Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence

脑电图 口译(哲学) 人工智能 计算机科学 心理学 神经科学 程序设计语言
作者
Jesper Tveit,Harald Aurlien,Sergey M. Plis,Vince D. Calhoun,William O. Tatum,Donald L. Schomer,Vibeke Arntsen,F. M. Cox,Firas Fahoum,William Gallentine,Elena Gardella,Cecil D. Hahn,Aatif M. Husain,Sudha Kilaru Kessler,Mustafa Aykut Kural,Fábio A. Nascimento,Hatice Tankişi,Line Bédos Ulvin,Richard Wennberg,Sándor Beniczky
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:80 (8): 805-805 被引量:130
标识
DOI:10.1001/jamaneurol.2023.1645
摘要

Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretation such as distinguishing abnormal from normal or identifying epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based on AI suitable for clinical practice is needed. To develop and validate an AI model (Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal from normal EEG recordings and to classify abnormal EEG recordings into categories relevant for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse. In this multicenter diagnostic accuracy study, a convolutional neural network model, SCORE-AI, was developed and validated using EEGs recorded between 2014 and 2020. Data were analyzed from January 17, 2022, until November 14, 2022. A total of 30 493 recordings of patients referred for EEG were included into the development data set annotated by 17 experts. Patients aged more than 3 months and not critically ill were eligible. The SCORE-AI was validated using 3 independent test data sets: a multicenter data set of 100 representative EEGs evaluated by 11 experts, a single-center data set of 9785 EEGs evaluated by 14 experts, and for benchmarking with previously published AI models, a data set of 60 EEGs with external reference standard. No patients who met eligibility criteria were excluded. Diagnostic accuracy, sensitivity, and specificity compared with the experts and the external reference standard of patients' habitual clinical episodes obtained during video-EEG recording. The characteristics of the EEG data sets include development data set (N = 30 493; 14 980 men; median age, 25.3 years [95% CI, 1.3-76.2 years]), multicenter test data set (N = 100; 61 men, median age, 25.8 years [95% CI, 4.1-85.5 years]), single-center test data set (N = 9785; 5168 men; median age, 35.4 years [95% CI, 0.6-87.4 years]), and test data set with external reference standard (N = 60; 27 men; median age, 36 years [95% CI, 3-75 years]). The SCORE-AI achieved high accuracy, with an area under the receiver operating characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities, and performance similar to human experts. Benchmarking against 3 previously published AI models was limited to comparing detection of epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was significantly higher than the 3 previously published models (P < .001) and similar to human experts. In this study, SCORE-AI achieved human expert level performance in fully automated interpretation of routine EEGs. Application of SCORE-AI may improve diagnosis and patient care in underserved areas and improve efficiency and consistency in specialized epilepsy centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
duoduo完成签到,获得积分10
刚刚
gzslwddhjx发布了新的文献求助10
刚刚
上官若男应助沟通亿心采纳,获得10
刚刚
1111111完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助dff采纳,获得10
1秒前
阿仔完成签到,获得积分10
1秒前
2秒前
2秒前
iiiiiuy发布了新的文献求助10
3秒前
zr完成签到,获得积分10
3秒前
科研通AI6应助甜兮采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
4秒前
希望天下0贩的0应助zv采纳,获得10
4秒前
Healer完成签到,获得积分10
4秒前
MICA关注了科研通微信公众号
4秒前
4秒前
bkagyin应助望空采纳,获得10
5秒前
高强发布了新的文献求助20
5秒前
ytzhang0587给花花的求助进行了留言
6秒前
超帅的靖完成签到,获得积分20
6秒前
陈杰发布了新的文献求助10
6秒前
6秒前
天123发布了新的文献求助10
7秒前
7秒前
大朋发布了新的文献求助10
7秒前
哆啦A梦完成签到,获得积分10
7秒前
8秒前
王肖儿发布了新的文献求助10
8秒前
壑舟完成签到,获得积分10
9秒前
茸茸茸完成签到,获得积分10
9秒前
范范778完成签到 ,获得积分10
10秒前
一切都好发布了新的文献求助30
10秒前
淡定井完成签到 ,获得积分10
10秒前
銭銭銭完成签到,获得积分20
10秒前
顺利鱼发布了新的文献求助30
10秒前
11秒前
zzzllove发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726