Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence

脑电图 口译(哲学) 人工智能 计算机科学 心理学 神经科学 程序设计语言
作者
Jesper Tveit,Harald Aurlien,Sergey M. Plis,Vince D. Calhoun,William O. Tatum,Donald L. Schomer,Vibeke Arntsen,F. M. Cox,Firas Fahoum,William Gallentine,Elena Gardella,Cecil D. Hahn,Aatif M. Husain,Sudha Kilaru Kessler,Mustafa Aykut Kural,Fábio A. Nascimento,Hatice Tankişi,Line Bédos Ulvin,Richard Wennberg,Sándor Beniczky
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:80 (8): 805-805 被引量:130
标识
DOI:10.1001/jamaneurol.2023.1645
摘要

Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretation such as distinguishing abnormal from normal or identifying epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based on AI suitable for clinical practice is needed. To develop and validate an AI model (Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal from normal EEG recordings and to classify abnormal EEG recordings into categories relevant for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse. In this multicenter diagnostic accuracy study, a convolutional neural network model, SCORE-AI, was developed and validated using EEGs recorded between 2014 and 2020. Data were analyzed from January 17, 2022, until November 14, 2022. A total of 30 493 recordings of patients referred for EEG were included into the development data set annotated by 17 experts. Patients aged more than 3 months and not critically ill were eligible. The SCORE-AI was validated using 3 independent test data sets: a multicenter data set of 100 representative EEGs evaluated by 11 experts, a single-center data set of 9785 EEGs evaluated by 14 experts, and for benchmarking with previously published AI models, a data set of 60 EEGs with external reference standard. No patients who met eligibility criteria were excluded. Diagnostic accuracy, sensitivity, and specificity compared with the experts and the external reference standard of patients' habitual clinical episodes obtained during video-EEG recording. The characteristics of the EEG data sets include development data set (N = 30 493; 14 980 men; median age, 25.3 years [95% CI, 1.3-76.2 years]), multicenter test data set (N = 100; 61 men, median age, 25.8 years [95% CI, 4.1-85.5 years]), single-center test data set (N = 9785; 5168 men; median age, 35.4 years [95% CI, 0.6-87.4 years]), and test data set with external reference standard (N = 60; 27 men; median age, 36 years [95% CI, 3-75 years]). The SCORE-AI achieved high accuracy, with an area under the receiver operating characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities, and performance similar to human experts. Benchmarking against 3 previously published AI models was limited to comparing detection of epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was significantly higher than the 3 previously published models (P < .001) and similar to human experts. In this study, SCORE-AI achieved human expert level performance in fully automated interpretation of routine EEGs. Application of SCORE-AI may improve diagnosis and patient care in underserved areas and improve efficiency and consistency in specialized epilepsy centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangmeiqiong完成签到,获得积分10
刚刚
冷静丸子完成签到 ,获得积分10
1秒前
大海之滨完成签到,获得积分10
1秒前
田様应助t250采纳,获得10
2秒前
畅快的念烟完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
111完成签到,获得积分10
4秒前
科研通AI6应助得唔闻采纳,获得30
5秒前
潇洒凡柔完成签到 ,获得积分10
5秒前
goodsheep完成签到 ,获得积分10
5秒前
阿司匹林完成签到,获得积分20
5秒前
科研通AI2S应助JJ采纳,获得10
5秒前
hei完成签到 ,获得积分10
5秒前
7秒前
华仔应助kinizu采纳,获得30
7秒前
风趣的涵柏完成签到,获得积分10
7秒前
7秒前
xuexue完成签到,获得积分10
8秒前
橘子味的橙子完成签到,获得积分10
8秒前
sx完成签到,获得积分10
8秒前
8秒前
研友_599Y85完成签到,获得积分10
8秒前
橘子的哈哈怪完成签到,获得积分10
9秒前
9秒前
刘艺娜完成签到,获得积分10
9秒前
鼠性社恐患者完成签到,获得积分10
10秒前
magic完成签到 ,获得积分10
10秒前
妙木仙完成签到,获得积分10
10秒前
callmekar发布了新的文献求助10
10秒前
nihaoya完成签到,获得积分10
11秒前
无职完成签到,获得积分10
11秒前
D调的华丽完成签到,获得积分10
11秒前
11秒前
W1nk发布了新的文献求助10
11秒前
张晓芮完成签到 ,获得积分10
12秒前
12秒前
11发布了新的文献求助10
12秒前
撒玉完成签到,获得积分10
12秒前
a553355完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883