Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence

脑电图 口译(哲学) 人工智能 计算机科学 心理学 神经科学 程序设计语言
作者
Jesper Tveit,Harald Aurlien,Sergey M. Plis,Vince D. Calhoun,William O. Tatum,Donald L. Schomer,Vibeke Arntsen,F. M. Cox,Firas Fahoum,William Gallentine,Elena Gardella,Cecil D. Hahn,Aatif M. Husain,Sudha Kilaru Kessler,Mustafa Aykut Kural,Fábio A. Nascimento,Hatice Tankişi,Line Bédos Ulvin,Richard Wennberg,Sándor Beniczky
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:80 (8): 805-805 被引量:130
标识
DOI:10.1001/jamaneurol.2023.1645
摘要

Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretation such as distinguishing abnormal from normal or identifying epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based on AI suitable for clinical practice is needed. To develop and validate an AI model (Standardized Computer-based Organized Reporting of EEG-Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal from normal EEG recordings and to classify abnormal EEG recordings into categories relevant for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-focal, and nonepileptiform-diffuse. In this multicenter diagnostic accuracy study, a convolutional neural network model, SCORE-AI, was developed and validated using EEGs recorded between 2014 and 2020. Data were analyzed from January 17, 2022, until November 14, 2022. A total of 30 493 recordings of patients referred for EEG were included into the development data set annotated by 17 experts. Patients aged more than 3 months and not critically ill were eligible. The SCORE-AI was validated using 3 independent test data sets: a multicenter data set of 100 representative EEGs evaluated by 11 experts, a single-center data set of 9785 EEGs evaluated by 14 experts, and for benchmarking with previously published AI models, a data set of 60 EEGs with external reference standard. No patients who met eligibility criteria were excluded. Diagnostic accuracy, sensitivity, and specificity compared with the experts and the external reference standard of patients' habitual clinical episodes obtained during video-EEG recording. The characteristics of the EEG data sets include development data set (N = 30 493; 14 980 men; median age, 25.3 years [95% CI, 1.3-76.2 years]), multicenter test data set (N = 100; 61 men, median age, 25.8 years [95% CI, 4.1-85.5 years]), single-center test data set (N = 9785; 5168 men; median age, 35.4 years [95% CI, 0.6-87.4 years]), and test data set with external reference standard (N = 60; 27 men; median age, 36 years [95% CI, 3-75 years]). The SCORE-AI achieved high accuracy, with an area under the receiver operating characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities, and performance similar to human experts. Benchmarking against 3 previously published AI models was limited to comparing detection of epileptiform abnormalities. The accuracy of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was significantly higher than the 3 previously published models (P < .001) and similar to human experts. In this study, SCORE-AI achieved human expert level performance in fully automated interpretation of routine EEGs. Application of SCORE-AI may improve diagnosis and patient care in underserved areas and improve efficiency and consistency in specialized epilepsy centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zm关闭了zm文献求助
1秒前
pengze完成签到,获得积分10
2秒前
痴情的阁发布了新的文献求助10
2秒前
3秒前
3秒前
香蕉觅云应助细心雁兰采纳,获得10
3秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
科研通AI2S应助优美紫槐采纳,获得10
5秒前
肖福艳完成签到,获得积分10
5秒前
今后应助qzliyulin采纳,获得10
6秒前
彬彬有李完成签到,获得积分10
7秒前
WXB完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助唠叨的白曼采纳,获得10
10秒前
小古发布了新的文献求助10
12秒前
有人应助愤怒的绿蕊采纳,获得10
13秒前
古卡可可完成签到 ,获得积分10
13秒前
13秒前
13秒前
帅气凝海发布了新的文献求助30
14秒前
22完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
学术脑袋发布了新的文献求助10
17秒前
lifangqi完成签到,获得积分20
18秒前
19秒前
19秒前
hannah完成签到,获得积分10
20秒前
酸奶烤着吃完成签到,获得积分10
21秒前
Owen应助391X小king采纳,获得10
22秒前
22秒前
小古完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
梦幻发布了新的文献求助10
24秒前
楚博完成签到,获得积分10
24秒前
Am1r完成签到,获得积分10
24秒前
hannah发布了新的文献求助20
25秒前
赵康康发布了新的文献求助10
25秒前
蒸盐粥发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365