Deterioration Detection in Historical Buildings with Different Materials Based on Novel Deep Learning Methods with Focusing on Isfahan Historical Bridges

风化 工程类 法律工程学 开裂 深度学习 土木工程 人工智能 采矿工程 计算机科学 地质学 材料科学 矿物学 复合材料
作者
Narges Karimi,Nima Valibeig,Hamid R. Rabiee
出处
期刊:International Journal of Architectural Heritage [Informa]
卷期号:: 1-13 被引量:5
标识
DOI:10.1080/15583058.2023.2201576
摘要

Historical bridges comprise part of any society’s history, culture, and identity and reveal the manufacturing technology of hydraulic structures at their time. Nevertheless, these structures deteriorate because of their materials, the passage of time, and natural factors. Because of drought in the past two decades, historic bridges in Isfahan have faced consecutive wet-dry cycles, resulting in further defects in bridges. Moreover, stone materials in the bases and brick materials in the bodies of bridges have made detecting defects more complex, requiring experts for each material. Additionally, insufficient attention to these defects or human errors in their proper detection can affect their structural integrity. This article has utilized deep learning methods to detect defects in these structures with different materials. To achieve initial data, the authors took 8331 images of bridges in Isfahan. Then, the defects (cracking, flaking, erosion, salt efflorescence, and no defect) were labeled based on the materials (brick and stone). Overall, seven different classes were defined for network training. After investigating various models of deep networks, the Inception-ResNet-v2 model was selected as the optimal model. We used this model to achieve the accuracy, precision, and recall criteria of 96.58, 96.96, and 96.24%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研采纳,获得10
1秒前
乐观的代桃关注了科研通微信公众号
2秒前
2秒前
3秒前
tc完成签到,获得积分10
3秒前
FreyaDoyle关注了科研通微信公众号
4秒前
6秒前
蒸蒸日上完成签到,获得积分20
8秒前
shz8012发布了新的文献求助20
10秒前
蒸蒸日上发布了新的文献求助10
10秒前
爆米花应助tc采纳,获得10
11秒前
呼了个呼发布了新的文献求助10
12秒前
Rational发布了新的文献求助10
13秒前
16秒前
陈俊雷完成签到 ,获得积分10
17秒前
斯文败类应助蟹老板采纳,获得10
18秒前
洞两完成签到,获得积分10
20秒前
20秒前
abc完成签到 ,获得积分10
21秒前
科研发布了新的文献求助10
22秒前
科研小民工应助xiaozeng采纳,获得50
22秒前
酷酷邴完成签到,获得积分10
24秒前
CriusMa完成签到,获得积分10
25秒前
charlotte完成签到,获得积分20
28秒前
shz8012完成签到,获得积分10
30秒前
科目三应助abc采纳,获得10
31秒前
lee完成签到,获得积分10
31秒前
搜集达人应助lyy采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得30
32秒前
32秒前
JamesPei应助科研通管家采纳,获得10
33秒前
顾矜应助科研通管家采纳,获得30
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得30
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
33秒前
科研通AI5应助魏伯安采纳,获得10
34秒前
一次就好完成签到,获得积分10
34秒前
A.y.w完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Exploring the effects of an evidenced-based professional development programme on teaching and learning in Chinese kindergartens 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3576442
求助须知:如何正确求助?哪些是违规求助? 3146450
关于积分的说明 9465319
捐赠科研通 2848048
什么是DOI,文献DOI怎么找? 1565396
邀请新用户注册赠送积分活动 732992
科研通“疑难数据库(出版商)”最低求助积分说明 719532