Deterioration Detection in Historical Buildings with Different Materials Based on Novel Deep Learning Methods with Focusing on Isfahan Historical Bridges

风化 工程类 法律工程学 开裂 深度学习 土木工程 人工智能 采矿工程 计算机科学 地质学 材料科学 矿物学 复合材料
作者
Narges Karimi,Nima Valibeig,Hamid R. Rabiee
出处
期刊:International Journal of Architectural Heritage [Taylor & Francis]
卷期号:: 1-13 被引量:5
标识
DOI:10.1080/15583058.2023.2201576
摘要

Historical bridges comprise part of any society’s history, culture, and identity and reveal the manufacturing technology of hydraulic structures at their time. Nevertheless, these structures deteriorate because of their materials, the passage of time, and natural factors. Because of drought in the past two decades, historic bridges in Isfahan have faced consecutive wet-dry cycles, resulting in further defects in bridges. Moreover, stone materials in the bases and brick materials in the bodies of bridges have made detecting defects more complex, requiring experts for each material. Additionally, insufficient attention to these defects or human errors in their proper detection can affect their structural integrity. This article has utilized deep learning methods to detect defects in these structures with different materials. To achieve initial data, the authors took 8331 images of bridges in Isfahan. Then, the defects (cracking, flaking, erosion, salt efflorescence, and no defect) were labeled based on the materials (brick and stone). Overall, seven different classes were defined for network training. After investigating various models of deep networks, the Inception-ResNet-v2 model was selected as the optimal model. We used this model to achieve the accuracy, precision, and recall criteria of 96.58, 96.96, and 96.24%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪雪儿发布了新的文献求助10
1秒前
wq发布了新的文献求助10
1秒前
楠小秾发布了新的文献求助10
1秒前
1秒前
李健的粉丝团团长应助zzz采纳,获得10
2秒前
一只壁虎发布了新的文献求助10
2秒前
orixero应助YY采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
洛丶完成签到,获得积分20
4秒前
4秒前
领导范儿应助钟ZJ采纳,获得10
4秒前
5秒前
5秒前
6秒前
xyz发布了新的文献求助10
7秒前
7秒前
7秒前
DouBo完成签到,获得积分10
7秒前
ustcliyang完成签到,获得积分10
7秒前
ding应助HAO采纳,获得10
8秒前
冷傲的寻梅完成签到,获得积分10
9秒前
恰逢时年发布了新的文献求助10
9秒前
大力初珍完成签到 ,获得积分10
10秒前
飞呀发布了新的文献求助30
10秒前
10秒前
可爱的函函应助rebeccahu采纳,获得10
11秒前
ttnnn发布了新的文献求助10
11秒前
无极之道发布了新的文献求助10
11秒前
李健应助香风智乃采纳,获得10
12秒前
qise发布了新的文献求助10
13秒前
13秒前
蓝橙完成签到,获得积分10
15秒前
流星发布了新的文献求助10
15秒前
大模型应助无尘采纳,获得10
16秒前
Roses完成签到,获得积分10
17秒前
道元完成签到,获得积分10
18秒前
yznfly应助radish采纳,获得30
19秒前
20秒前
完美世界应助阿宅采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788