Wavelet-Based Self-Attention GAN With Collaborative Feature Fusion for Image Inpainting

修补 鉴别器 人工智能 计算机科学 特征(语言学) 棱锥(几何) 模式识别(心理学) 小波 图像(数学) 频道(广播) 特征向量 计算机视觉 数学 电信 计算机网络 语言学 哲学 几何学 探测器
作者
Lili Shen,Jie Yan,Xichun Sun,Beichen Li,Zhaoqing Pan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (6): 1651-1664 被引量:8
标识
DOI:10.1109/tetci.2023.3263200
摘要

Image inpainting is a significant task in the applications of computer vision, that aims to fill in damaged regions with visually realistic contents. With the development of deep learning, generative adversarial network (GAN)-based image inpainting approaches have achieved remarkable progress. However, these methods only utilize one-sided structure information to assist inpainting, which can not achieve satisfactory results, especially when synthesizing large-area missing complex images. In order to tackle this problem, a wavelet-based self-attention GAN (WSA-GAN) with collaborative feature fusion is proposed, which is embedded with a wavelet-based self-attention (WSA) and a collaborative feature fusion (CFF). The WSA is designed to conduct long-range dependence among multi-scale frequency information to highlight significant structure details for better generating texture boundaries. The CFF is presented to couple channel-guided space and space-affected channel streams to facilitate the interaction of spatial and channel features, which can effectively avoid potential domain conflicts. Besides, a novel wavelet consistency loss and a hierarchical pyramid feature matching (PFM) discriminator are introduced to stabilize the model training. Extensive experiments on three public datasets, including Paris StreetView, CelebA-HQ and Places, demonstrate that the proposed method outperforms the state-of-the-art methods both quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助姆姆没买采纳,获得10
刚刚
diyochean关注了科研通微信公众号
2秒前
3秒前
myp完成签到,获得积分10
5秒前
李健应助哈娜桑de悦采纳,获得10
5秒前
方格完成签到 ,获得积分10
5秒前
5秒前
研友_ZlelD8发布了新的文献求助10
6秒前
赘婿应助BZPL采纳,获得10
6秒前
7秒前
见怪不怪发布了新的文献求助10
8秒前
脑洞疼应助Ultraman45采纳,获得10
9秒前
9秒前
11秒前
舒心盼旋完成签到,获得积分10
11秒前
方格发布了新的文献求助30
13秒前
渣渣完成签到,获得积分10
14秒前
小二郎应助阿利呀采纳,获得20
14秒前
斯文败类应助云里采纳,获得10
14秒前
15秒前
学术长颈鹿完成签到,获得积分10
15秒前
wjl发布了新的文献求助10
15秒前
生动惜灵应助英俊延恶采纳,获得10
16秒前
Leeny发布了新的文献求助10
17秒前
Akim应助飞快的尔容采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
Rr发布了新的文献求助10
21秒前
Aurora发布了新的文献求助10
21秒前
ding应助HXia采纳,获得30
21秒前
提米橘发布了新的文献求助50
21秒前
22秒前
24秒前
ipainkiller完成签到,获得积分10
24秒前
24秒前
李明发布了新的文献求助10
25秒前
调研昵称发布了新的文献求助10
25秒前
1234发布了新的文献求助10
25秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523