亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wavelet-Based Self-Attention GAN With Collaborative Feature Fusion for Image Inpainting

修补 鉴别器 人工智能 计算机科学 特征(语言学) 棱锥(几何) 模式识别(心理学) 小波 图像(数学) 频道(广播) 特征向量 计算机视觉 数学 电信 计算机网络 语言学 哲学 几何学 探测器
作者
Lili Shen,Jie Yan,Xichun Sun,Beichen Li,Zhaoqing Pan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (6): 1651-1664 被引量:8
标识
DOI:10.1109/tetci.2023.3263200
摘要

Image inpainting is a significant task in the applications of computer vision, that aims to fill in damaged regions with visually realistic contents. With the development of deep learning, generative adversarial network (GAN)-based image inpainting approaches have achieved remarkable progress. However, these methods only utilize one-sided structure information to assist inpainting, which can not achieve satisfactory results, especially when synthesizing large-area missing complex images. In order to tackle this problem, a wavelet-based self-attention GAN (WSA-GAN) with collaborative feature fusion is proposed, which is embedded with a wavelet-based self-attention (WSA) and a collaborative feature fusion (CFF). The WSA is designed to conduct long-range dependence among multi-scale frequency information to highlight significant structure details for better generating texture boundaries. The CFF is presented to couple channel-guided space and space-affected channel streams to facilitate the interaction of spatial and channel features, which can effectively avoid potential domain conflicts. Besides, a novel wavelet consistency loss and a hierarchical pyramid feature matching (PFM) discriminator are introduced to stabilize the model training. Extensive experiments on three public datasets, including Paris StreetView, CelebA-HQ and Places, demonstrate that the proposed method outperforms the state-of-the-art methods both quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
刚刚
11111完成签到,获得积分10
1秒前
小刘在学习完成签到,获得积分20
2秒前
8秒前
12秒前
18秒前
贝壳beck发布了新的文献求助10
21秒前
烂漫的无剑完成签到,获得积分10
23秒前
李健应助科研小白采纳,获得10
25秒前
33秒前
略略略完成签到,获得积分10
42秒前
45秒前
一木完成签到,获得积分10
47秒前
略略略发布了新的文献求助10
49秒前
11完成签到,获得积分20
58秒前
李雨芯完成签到,获得积分10
1分钟前
大个应助李雨芯采纳,获得10
1分钟前
1分钟前
swwhite发布了新的文献求助10
1分钟前
科研小白发布了新的文献求助10
1分钟前
充电宝应助wucl1990采纳,获得10
1分钟前
1分钟前
wucl1990发布了新的文献求助10
1分钟前
DrSong完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
dahai发布了新的文献求助10
1分钟前
ding应助科研小白采纳,获得10
1分钟前
1分钟前
dahai完成签到,获得积分10
1分钟前
i好运发布了新的文献求助10
1分钟前
2分钟前
科研小白发布了新的文献求助10
2分钟前
传奇3应助i好运采纳,获得10
2分钟前
隐形曼青应助科研小白采纳,获得10
2分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
黄沙漠完成签到 ,获得积分10
2分钟前
余念安完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865