Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 哲学 古生物学 统计 生物 语言学 几何学
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10632-10649 被引量:13
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天才玩家H发布了新的文献求助10
1秒前
超级白玉发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
忧伤的渊思完成签到,获得积分10
2秒前
123456发布了新的文献求助10
3秒前
FashionBoy应助clouds采纳,获得10
3秒前
负数完成签到,获得积分10
5秒前
dyd发布了新的文献求助10
5秒前
Orange应助阿正嗖啪采纳,获得10
5秒前
威武的雁易完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
机智的天蓉完成签到 ,获得积分10
7秒前
8秒前
8秒前
Passion完成签到,获得积分10
8秒前
山山以川发布了新的文献求助10
9秒前
9秒前
KOBE94FU完成签到,获得积分10
9秒前
9秒前
10秒前
MJJJ完成签到,获得积分10
10秒前
10秒前
陈陈发布了新的文献求助10
11秒前
烟花应助泡泡汽水采纳,获得10
11秒前
科研通AI6应助zoushiyi采纳,获得10
12秒前
归尘发布了新的文献求助10
12秒前
Passion发布了新的文献求助10
13秒前
13秒前
luck完成签到,获得积分10
13秒前
熊研研发布了新的文献求助30
13秒前
Jasper应助科研的神龙猫采纳,获得10
13秒前
13秒前
赘婿应助ly浩采纳,获得10
13秒前
顾矜应助干昕慈采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488