Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 哲学 古生物学 统计 生物 语言学 几何学
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 10632-10649 被引量:13
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助zhangyue7777采纳,获得10
刚刚
1秒前
火龙果发布了新的文献求助10
1秒前
fei菲飞完成签到,获得积分10
3秒前
4秒前
4秒前
how应助everglow采纳,获得10
7秒前
ZihuiCCCC完成签到,获得积分10
7秒前
来自3602完成签到,获得积分10
8秒前
9秒前
小林完成签到,获得积分10
10秒前
小二郎应助雨中尘埃采纳,获得10
11秒前
平淡树叶完成签到,获得积分20
13秒前
how应助唐泽雪穗采纳,获得40
15秒前
美好灵寒发布了新的文献求助10
15秒前
英俊的铭应助new采纳,获得10
15秒前
漫漫完成签到 ,获得积分10
15秒前
所所应助dsajkdlas采纳,获得10
15秒前
llllllll完成签到,获得积分10
17秒前
19秒前
玛卡巴卡完成签到,获得积分10
19秒前
19秒前
好好学习完成签到,获得积分10
20秒前
JokerSun关注了科研通微信公众号
20秒前
Ry发布了新的文献求助10
21秒前
科研通AI6应助细腻的易真采纳,获得10
22秒前
ilc发布了新的文献求助10
23秒前
23秒前
莫愁一舞完成签到,获得积分10
23秒前
复杂的薯片完成签到,获得积分10
24秒前
科研通AI5应助Carly采纳,获得30
24秒前
zll发布了新的文献求助10
25秒前
Jasper应助shabbow采纳,获得50
26秒前
小二郎应助77采纳,获得10
28秒前
三三完成签到 ,获得积分10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080