亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 哲学 古生物学 统计 生物 语言学 几何学
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10632-10649 被引量:13
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余闻问发布了新的文献求助10
2秒前
zoiaii完成签到 ,获得积分10
5秒前
张志超发布了新的文献求助10
5秒前
mmyhn发布了新的文献求助10
8秒前
Metx完成签到 ,获得积分10
9秒前
13秒前
科研小菜鸟完成签到,获得积分10
19秒前
23秒前
林狗完成签到 ,获得积分10
24秒前
25秒前
H_W完成签到 ,获得积分10
26秒前
yuanyuan发布了新的文献求助10
27秒前
科研通AI6应助科研小菜鸟采纳,获得30
34秒前
科研通AI2S应助丁又菡采纳,获得50
35秒前
37秒前
YAKI完成签到,获得积分10
40秒前
丰富青雪发布了新的文献求助10
41秒前
搜集达人应助Seeking采纳,获得10
42秒前
科研通AI6应助一个西藏采纳,获得10
42秒前
思源应助勇敢且鲁班采纳,获得10
44秒前
彭于晏应助Zenia采纳,获得10
50秒前
清爽的又夏完成签到,获得积分10
51秒前
51秒前
情怀应助YAKI采纳,获得10
53秒前
54秒前
英姑应助清爽的又夏采纳,获得10
55秒前
寒冷河马完成签到,获得积分10
55秒前
ceeray23应助科研通管家采纳,获得10
56秒前
思源应助科研通管家采纳,获得10
56秒前
BowieHuang应助科研通管家采纳,获得10
56秒前
56秒前
ceeray23应助科研通管家采纳,获得10
56秒前
NexusExplorer应助科研通管家采纳,获得10
56秒前
57秒前
Demi_Ming完成签到,获得积分10
59秒前
59秒前
斯文败类应助yuanyuan采纳,获得10
1分钟前
任性的水风完成签到,获得积分10
1分钟前
丰富青雪完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898