Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 古生物学 生物 几何学 哲学 语言学 统计
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10632-10649 被引量:13
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强风吹拂完成签到,获得积分10
刚刚
sasa完成签到 ,获得积分10
1秒前
云止发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
Hello应助狗大王采纳,获得10
3秒前
Yuan完成签到,获得积分10
3秒前
3秒前
可爱书竹发布了新的文献求助10
3秒前
spencer177完成签到,获得积分10
3秒前
xiaohan发布了新的文献求助50
3秒前
3秒前
馨妈完成签到,获得积分10
3秒前
yangmin完成签到,获得积分10
4秒前
搜集达人应助hhhhhhh采纳,获得30
4秒前
Alisa_su发布了新的文献求助20
4秒前
田様应助151采纳,获得10
5秒前
yang完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
Lucas应助府中园马采纳,获得10
6秒前
乐乐应助江河JT采纳,获得10
6秒前
充电宝应助小黄采纳,获得10
7秒前
8秒前
王伟轩发布了新的文献求助10
8秒前
奋斗的俊驰完成签到,获得积分20
9秒前
可爱书竹完成签到,获得积分10
9秒前
思源应助耍酷含芙采纳,获得10
10秒前
ssu90完成签到 ,获得积分10
10秒前
顾矜应助小太阳采纳,获得10
10秒前
昏睡的芒果完成签到,获得积分10
11秒前
Catalina_S应助suesue采纳,获得10
11秒前
jessicaw完成签到,获得积分0
11秒前
zhanghan完成签到,获得积分10
11秒前
古卡可可完成签到 ,获得积分10
12秒前
12秒前
12秒前
怕黑山晴完成签到,获得积分10
12秒前
小黄完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512005
求助须知:如何正确求助?哪些是违规求助? 4606383
关于积分的说明 14499618
捐赠科研通 4541837
什么是DOI,文献DOI怎么找? 2488679
邀请新用户注册赠送积分活动 1470735
关于科研通互助平台的介绍 1443035