Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 哲学 古生物学 统计 生物 语言学 几何学
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10632-10649 被引量:13
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助迅速的仰采纳,获得10
刚刚
科研通AI6应助张张采纳,获得10
刚刚
1秒前
1秒前
summer夏完成签到,获得积分10
1秒前
伊伊发布了新的文献求助10
3秒前
谦让靖儿发布了新的文献求助10
4秒前
4秒前
4秒前
愤怒的鹰完成签到,获得积分20
4秒前
5秒前
慕青应助晚生采纳,获得10
6秒前
领导范儿应助沉静水儿采纳,获得10
6秒前
科研通AI6应助mucheng采纳,获得10
6秒前
6秒前
7秒前
三月完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
FGGFGGU发布了新的文献求助10
9秒前
脑洞疼应助shiqi采纳,获得10
9秒前
xx关注了科研通微信公众号
11秒前
yyy完成签到,获得积分10
13秒前
小乖完成签到,获得积分10
13秒前
星星完成签到,获得积分10
13秒前
13秒前
13秒前
tantan完成签到,获得积分10
13秒前
14秒前
三月发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助伊伊采纳,获得10
15秒前
asdfzxcv应助迷路的派派采纳,获得10
15秒前
晚生完成签到,获得积分10
16秒前
一心只想拿核心完成签到,获得积分10
16秒前
16秒前
wuwa完成签到,获得积分10
17秒前
yuzu完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642882
求助须知:如何正确求助?哪些是违规求助? 4760127
关于积分的说明 15019330
捐赠科研通 4801400
什么是DOI,文献DOI怎么找? 2566683
邀请新用户注册赠送积分活动 1524598
关于科研通互助平台的介绍 1484211