Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 古生物学 生物 几何学 哲学 语言学 统计
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10632-10649 被引量:4
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nick发布了新的文献求助10
刚刚
QCL完成签到,获得积分10
1秒前
李健的粉丝团团长应助wxy采纳,获得10
1秒前
共享精神应助时尚萤采纳,获得10
2秒前
呼呼哈哈完成签到,获得积分10
2秒前
啦啦啦喽完成签到,获得积分10
3秒前
3秒前
4秒前
大模型应助danti采纳,获得10
4秒前
霖槿发布了新的文献求助10
5秒前
兴胜完成签到,获得积分10
5秒前
5秒前
巴拉巴拉魔仙堡完成签到,获得积分10
6秒前
piao41完成签到,获得积分10
6秒前
7秒前
坚强亦丝应助司徒无剑采纳,获得10
7秒前
7秒前
cxr完成签到,获得积分10
8秒前
8秒前
8秒前
照照完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
不要失眠完成签到,获得积分20
10秒前
小钱钱发布了新的文献求助10
10秒前
iufan发布了新的文献求助10
11秒前
danti完成签到,获得积分10
11秒前
11秒前
活力元龙发布了新的文献求助10
11秒前
wxy完成签到,获得积分10
12秒前
always完成签到 ,获得积分10
12秒前
12秒前
兴胜发布了新的文献求助10
12秒前
wxd完成签到,获得积分20
13秒前
14秒前
piao41发布了新的文献求助50
14秒前
14秒前
25号底片给LC的求助进行了留言
15秒前
15秒前
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825