Deep adversarial data augmentation for biomedical spectroscopy: Application to modelling Raman spectra of bone

拉曼光谱 计算机科学 对抗制 谱线 数据挖掘 人工智能 数据科学 物理 光学 天文
作者
Eleftherios Pavlou,N. Kourkoumelis
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:228: 104634-104634 被引量:8
标识
DOI:10.1016/j.chemolab.2022.104634
摘要

Deep learning algorithms have performed remarkably well to predict state of health. Nevertheless, they typically rely on ample training data to avoid overfitting. In the biomedical sector, sufficient data are not typically available due to low availability or accessibility. Data augmentation of physiological recordings can be achieved using Generative Adversarial Networks (GAN). GAN is a computational framework for approximating generative models within an adversarial process, where two neural networks compete against one other while being trained simultaneously. Despite the widespread use and adoption of deep learning algorithms in life sciences, concerns have been raised about the lack of biological context. Therefore, to assess a data augmentation workflow, both computational and physiological quality metrics must be considered. Raman spectroscopy can be effectively used to study the molecular properties of bone tissue. Both inorganic and organic phases can be analysed simultaneously as probes of bone health status. In this work, we describe an easy-to-follow GAN approach for generating synthetic Raman spectra from a small dataset of ex vivo healthy and osteoporotic bone samples. The model was applied to raw Raman spectra, while it can be modified accordingly to produce any one-dimensional biomedical signal. We also introduced a novel unsupervised methodology to evaluate the variability of the synthetic dataset, based on successive Principal Component Analysis (PCA) modelling. The properties of the synthetic spectra were scrutinized by Fréchet Distance and difference spectroscopy, as well as by bone quality metrics, like mineral-to-matrix ratio and crystallinity. Finally, classification studies demonstrated the increased discrimination accuracy of the augmented dataset. • An easy-to-follow Generative Adversarial Network (GAN) for generating synthetic Raman spectra of bone tissue. • The properties of the synthetic spectra were assessed by quantitative and qualitative metrics based on bone physiology. • A novel successive Principal Component Analysis (PCA) was introduced to preserve the variability of the synthetic dataset. • The current approach can be applied to a variety of biomedical signals or time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星际舟发布了新的文献求助10
刚刚
外向的老师完成签到,获得积分20
2秒前
GXY完成签到,获得积分10
2秒前
离线完成签到,获得积分10
4秒前
1234发布了新的文献求助10
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
淡定小翠完成签到,获得积分20
7秒前
嗯嗯完成签到 ,获得积分10
7秒前
dingjianqiang发布了新的文献求助10
7秒前
mingkle发布了新的文献求助10
7秒前
8秒前
wanci应助莉莉采纳,获得10
8秒前
叫我小可爱完成签到,获得积分10
11秒前
打打应助假发君采纳,获得10
12秒前
淡定小翠发布了新的文献求助10
13秒前
66完成签到,获得积分10
13秒前
youbin完成签到 ,获得积分10
16秒前
猪猪hero发布了新的文献求助10
17秒前
优秀的一整天完成签到 ,获得积分10
17秒前
土豪的钻石完成签到,获得积分10
20秒前
23秒前
平淡豁完成签到,获得积分10
24秒前
27秒前
此话当真发布了新的文献求助10
27秒前
HYX完成签到,获得积分10
27秒前
lebron发布了新的文献求助10
28秒前
大胆的弼完成签到,获得积分10
28秒前
29秒前
淞淞于我完成签到 ,获得积分10
29秒前
细腻冬易完成签到,获得积分10
30秒前
科研通AI2S应助monkey采纳,获得10
33秒前
HYX发布了新的文献求助10
35秒前
春国应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
乌龟娟应助科研通管家采纳,获得10
35秒前
春国应助科研通管家采纳,获得10
36秒前
脑洞疼应助科研通管家采纳,获得10
36秒前
jst应助科研通管家采纳,获得60
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354316
求助须知:如何正确求助?哪些是违规求助? 2978688
关于积分的说明 8686928
捐赠科研通 2660273
什么是DOI,文献DOI怎么找? 1456569
科研通“疑难数据库(出版商)”最低求助积分说明 674407
邀请新用户注册赠送积分活动 665247