Deep adversarial data augmentation for biomedical spectroscopy: Application to modelling Raman spectra of bone

拉曼光谱 计算机科学 对抗制 谱线 数据挖掘 人工智能 数据科学 物理 光学 天文
作者
Eleftherios Pavlou,N. Kourkoumelis
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:228: 104634-104634 被引量:8
标识
DOI:10.1016/j.chemolab.2022.104634
摘要

Deep learning algorithms have performed remarkably well to predict state of health. Nevertheless, they typically rely on ample training data to avoid overfitting. In the biomedical sector, sufficient data are not typically available due to low availability or accessibility. Data augmentation of physiological recordings can be achieved using Generative Adversarial Networks (GAN). GAN is a computational framework for approximating generative models within an adversarial process, where two neural networks compete against one other while being trained simultaneously. Despite the widespread use and adoption of deep learning algorithms in life sciences, concerns have been raised about the lack of biological context. Therefore, to assess a data augmentation workflow, both computational and physiological quality metrics must be considered. Raman spectroscopy can be effectively used to study the molecular properties of bone tissue. Both inorganic and organic phases can be analysed simultaneously as probes of bone health status. In this work, we describe an easy-to-follow GAN approach for generating synthetic Raman spectra from a small dataset of ex vivo healthy and osteoporotic bone samples. The model was applied to raw Raman spectra, while it can be modified accordingly to produce any one-dimensional biomedical signal. We also introduced a novel unsupervised methodology to evaluate the variability of the synthetic dataset, based on successive Principal Component Analysis (PCA) modelling. The properties of the synthetic spectra were scrutinized by Fréchet Distance and difference spectroscopy, as well as by bone quality metrics, like mineral-to-matrix ratio and crystallinity. Finally, classification studies demonstrated the increased discrimination accuracy of the augmented dataset. • An easy-to-follow Generative Adversarial Network (GAN) for generating synthetic Raman spectra of bone tissue. • The properties of the synthetic spectra were assessed by quantitative and qualitative metrics based on bone physiology. • A novel successive Principal Component Analysis (PCA) was introduced to preserve the variability of the synthetic dataset. • The current approach can be applied to a variety of biomedical signals or time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳惜梦发布了新的文献求助10
1秒前
1秒前
ding应助真源莫方采纳,获得10
1秒前
liu关闭了liu文献求助
2秒前
2秒前
5eV完成签到,获得积分10
3秒前
5秒前
6秒前
IF发布了新的文献求助10
7秒前
litdoc完成签到,获得积分10
7秒前
oushichan完成签到,获得积分10
9秒前
冷艳惜梦完成签到,获得积分10
9秒前
zly完成签到,获得积分10
10秒前
10秒前
那种发布了新的文献求助10
10秒前
小火车完成签到,获得积分20
12秒前
英姑应助z610938841采纳,获得10
13秒前
14秒前
DyG完成签到,获得积分10
15秒前
15秒前
bc发布了新的文献求助10
16秒前
16秒前
英姑应助litdoc采纳,获得10
16秒前
打打应助风趣的傲之采纳,获得10
16秒前
IF完成签到,获得积分20
17秒前
18秒前
如意的泥猴桃完成签到,获得积分10
18秒前
Miao发布了新的文献求助50
20秒前
20秒前
菜菜完成签到 ,获得积分10
21秒前
淡淡的香发布了新的文献求助80
21秒前
21秒前
tingtingzhang完成签到 ,获得积分10
21秒前
23秒前
24秒前
verbal2005发布了新的文献求助10
25秒前
26秒前
杨纨成发布了新的文献求助10
28秒前
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014