SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation

分割 计算机科学 掷骰子 人工智能 变压器 图像分割 模式识别(心理学) 尺度空间分割 计算机视觉 工程类 数学 几何学 电气工程 电压
作者
Jianyi Zhang,Yong Liu,Zhenhua Wu,Yongpan Wang,Yuhai Liu,Xianchong Xu,Bo Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 105954-105954 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.105954
摘要

In the last decade, deep neural networks have been widely applied to medical image segmentation, achieving good results in computer-aided diagnosis tasks etc. However, the task of segmenting highly complex, low-contrast images of organs and tissues with high accuracy still faces great challenges. To better address this challenge, this paper proposes a novel model SWTRU (Star-shaped Window Transformer Reinforced U-Net) by combining the U-Net network which plays well in the image segmentation field, and the Transformer which possesses a powerful ability to capture global contexts. Unlike the previous methods that import the Transformer into U-Net, an improved Star-shaped Window Transformer is introduced into the decoder of the SWTRU to enhance the decision-making capability of the whole method. The SWTRU uses a redesigned multi-scale skip-connection model, which retains the inductive bias of the original FCN structure for images while obtaining fine-grained features and coarse-grained semantic information. Our method also presents the FFIM (Filtering Feature Integration Mechanism) to integration and dimensionality reduction of the fused multi-layered features, which reduces the computation. Our SWTRU yields 0.972 DICE on CHLISC for liver and tumor segmentation, 0.897 DICE on LGG for glioma segmentation, and 0.904 DICE on ISIC2018 for skin diseases' segmentation, achieves substantial improvements over the current SoTA across 9 different medical image segment methods. SWTRU can combine feature mapping from different scales, high-level semantics, and global contextual relationships, this architecture is effective in the medical image segmentation. The experimental findings indicate that SWTRU produces superior performance on the medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangxiang发布了新的文献求助10
刚刚
4秒前
了0完成签到 ,获得积分10
9秒前
脑洞疼应助圣晟胜采纳,获得10
11秒前
霓娜酱发布了新的文献求助10
11秒前
13秒前
852应助xiaoxiao采纳,获得10
15秒前
lingjuanwu完成签到,获得积分10
15秒前
janice发布了新的文献求助10
16秒前
16秒前
快乐慕灵完成签到,获得积分10
18秒前
18秒前
JianYugen完成签到,获得积分10
18秒前
happy发布了新的文献求助10
19秒前
19秒前
20秒前
abe发布了新的文献求助10
21秒前
天天开心完成签到 ,获得积分10
21秒前
22秒前
23秒前
24秒前
所所应助clean采纳,获得10
25秒前
sad完成签到,获得积分10
26秒前
学术地瓜发布了新的文献求助10
26秒前
27秒前
28秒前
爱静静应助跳跃的访烟采纳,获得10
28秒前
在水一方应助圣晟胜采纳,获得10
29秒前
30秒前
30秒前
30秒前
segama完成签到 ,获得积分10
30秒前
在人中完成签到,获得积分10
30秒前
顾矜应助tangyuyi采纳,获得10
30秒前
我是老大应助满意冷荷采纳,获得10
33秒前
凝子老师发布了新的文献求助10
33秒前
Qinpy发布了新的文献求助20
34秒前
跳跃的访烟完成签到,获得积分10
34秒前
bkagyin应助janice采纳,获得10
35秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851