SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation

分割 计算机科学 掷骰子 人工智能 变压器 图像分割 模式识别(心理学) 尺度空间分割 计算机视觉 工程类 数学 几何学 电气工程 电压
作者
Jianyi Zhang,Yong Liu,Zhenhua Wu,Yongpan Wang,Yuhai Liu,Xianchong Xu,Bo Song
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 105954-105954 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.105954
摘要

In the last decade, deep neural networks have been widely applied to medical image segmentation, achieving good results in computer-aided diagnosis tasks etc. However, the task of segmenting highly complex, low-contrast images of organs and tissues with high accuracy still faces great challenges. To better address this challenge, this paper proposes a novel model SWTRU (Star-shaped Window Transformer Reinforced U-Net) by combining the U-Net network which plays well in the image segmentation field, and the Transformer which possesses a powerful ability to capture global contexts. Unlike the previous methods that import the Transformer into U-Net, an improved Star-shaped Window Transformer is introduced into the decoder of the SWTRU to enhance the decision-making capability of the whole method. The SWTRU uses a redesigned multi-scale skip-connection model, which retains the inductive bias of the original FCN structure for images while obtaining fine-grained features and coarse-grained semantic information. Our method also presents the FFIM (Filtering Feature Integration Mechanism) to integration and dimensionality reduction of the fused multi-layered features, which reduces the computation. Our SWTRU yields 0.972 DICE on CHLISC for liver and tumor segmentation, 0.897 DICE on LGG for glioma segmentation, and 0.904 DICE on ISIC2018 for skin diseases' segmentation, achieves substantial improvements over the current SoTA across 9 different medical image segment methods. SWTRU can combine feature mapping from different scales, high-level semantics, and global contextual relationships, this architecture is effective in the medical image segmentation. The experimental findings indicate that SWTRU produces superior performance on the medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wo发布了新的文献求助10
刚刚
CodeCraft应助陈冲冲采纳,获得10
刚刚
曾经阁完成签到 ,获得积分10
刚刚
唐若冰完成签到,获得积分10
1秒前
June完成签到,获得积分10
2秒前
黄毅完成签到 ,获得积分10
2秒前
aaaaaa发布了新的文献求助10
3秒前
shinn发布了新的文献求助10
4秒前
yyw完成签到 ,获得积分10
4秒前
5秒前
bkagyin应助aaaaaa采纳,获得10
7秒前
9秒前
斯文问旋完成签到,获得积分10
10秒前
隐形曼青应助许安采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
12秒前
归尘应助科研通管家采纳,获得10
12秒前
归尘应助科研通管家采纳,获得20
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
佳佳应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
黑眼豆豆完成签到,获得积分10
13秒前
13秒前
hhh发布了新的文献求助10
14秒前
顾矜应助s615采纳,获得10
15秒前
songjin完成签到 ,获得积分10
18秒前
打打应助称心热狗采纳,获得10
19秒前
Lucas应助hhh采纳,获得10
22秒前
23秒前
机灵的幻灵完成签到 ,获得积分10
23秒前
25秒前
26秒前
Owen应助学业繁忙采纳,获得10
28秒前
shinn发布了新的文献求助10
28秒前
29秒前
29秒前
YHF2完成签到,获得积分10
29秒前
江月年发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450