SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation

分割 计算机科学 掷骰子 人工智能 变压器 图像分割 模式识别(心理学) 尺度空间分割 计算机视觉 工程类 数学 电气工程 几何学 电压
作者
Jianyi Zhang,Yong Liu,Zhenhua Wu,Yongpan Wang,Yuhai Liu,Xianchong Xu,Bo Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 105954-105954 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.105954
摘要

In the last decade, deep neural networks have been widely applied to medical image segmentation, achieving good results in computer-aided diagnosis tasks etc. However, the task of segmenting highly complex, low-contrast images of organs and tissues with high accuracy still faces great challenges. To better address this challenge, this paper proposes a novel model SWTRU (Star-shaped Window Transformer Reinforced U-Net) by combining the U-Net network which plays well in the image segmentation field, and the Transformer which possesses a powerful ability to capture global contexts. Unlike the previous methods that import the Transformer into U-Net, an improved Star-shaped Window Transformer is introduced into the decoder of the SWTRU to enhance the decision-making capability of the whole method. The SWTRU uses a redesigned multi-scale skip-connection model, which retains the inductive bias of the original FCN structure for images while obtaining fine-grained features and coarse-grained semantic information. Our method also presents the FFIM (Filtering Feature Integration Mechanism) to integration and dimensionality reduction of the fused multi-layered features, which reduces the computation. Our SWTRU yields 0.972 DICE on CHLISC for liver and tumor segmentation, 0.897 DICE on LGG for glioma segmentation, and 0.904 DICE on ISIC2018 for skin diseases' segmentation, achieves substantial improvements over the current SoTA across 9 different medical image segment methods. SWTRU can combine feature mapping from different scales, high-level semantics, and global contextual relationships, this architecture is effective in the medical image segmentation. The experimental findings indicate that SWTRU produces superior performance on the medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
超神完成签到,获得积分10
1秒前
1秒前
cdgbdfbsfdvsd完成签到,获得积分10
2秒前
4秒前
4秒前
嗷卵犟完成签到,获得积分10
5秒前
忆之给SPQR的求助进行了留言
6秒前
cdgbdfbsfdvsd发布了新的文献求助10
6秒前
zrj发布了新的文献求助10
6秒前
dsd完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
乔柒柒发布了新的文献求助10
7秒前
min发布了新的文献求助10
9秒前
打打应助眼睛大的尔蝶采纳,获得10
11秒前
LEO发布了新的文献求助10
11秒前
11秒前
11秒前
华仔应助panda采纳,获得10
12秒前
12秒前
wsr完成签到 ,获得积分10
12秒前
田様应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
星星完成签到,获得积分10
13秒前
走走应助科研通管家采纳,获得10
14秒前
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
七月流火应助科研通管家采纳,获得30
14秒前
充电宝应助cc采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252120
求助须知:如何正确求助?哪些是违规求助? 2894918
关于积分的说明 8284229
捐赠科研通 2563608
什么是DOI,文献DOI怎么找? 1391769
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628951