SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation

分割 计算机科学 掷骰子 人工智能 变压器 图像分割 模式识别(心理学) 尺度空间分割 计算机视觉 工程类 数学 几何学 电气工程 电压
作者
Jianyi Zhang,Yong Liu,Zhenhua Wu,Yongpan Wang,Yuhai Liu,Xianchong Xu,Bo Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 105954-105954 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.105954
摘要

In the last decade, deep neural networks have been widely applied to medical image segmentation, achieving good results in computer-aided diagnosis tasks etc. However, the task of segmenting highly complex, low-contrast images of organs and tissues with high accuracy still faces great challenges. To better address this challenge, this paper proposes a novel model SWTRU (Star-shaped Window Transformer Reinforced U-Net) by combining the U-Net network which plays well in the image segmentation field, and the Transformer which possesses a powerful ability to capture global contexts. Unlike the previous methods that import the Transformer into U-Net, an improved Star-shaped Window Transformer is introduced into the decoder of the SWTRU to enhance the decision-making capability of the whole method. The SWTRU uses a redesigned multi-scale skip-connection model, which retains the inductive bias of the original FCN structure for images while obtaining fine-grained features and coarse-grained semantic information. Our method also presents the FFIM (Filtering Feature Integration Mechanism) to integration and dimensionality reduction of the fused multi-layered features, which reduces the computation. Our SWTRU yields 0.972 DICE on CHLISC for liver and tumor segmentation, 0.897 DICE on LGG for glioma segmentation, and 0.904 DICE on ISIC2018 for skin diseases' segmentation, achieves substantial improvements over the current SoTA across 9 different medical image segment methods. SWTRU can combine feature mapping from different scales, high-level semantics, and global contextual relationships, this architecture is effective in the medical image segmentation. The experimental findings indicate that SWTRU produces superior performance on the medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时冬冬发布了新的文献求助10
刚刚
kento应助Suki采纳,获得50
刚刚
奋斗朋友完成签到 ,获得积分10
刚刚
1秒前
1秒前
桐桐应助一叶扁舟采纳,获得10
2秒前
传奇3应助catch采纳,获得10
2秒前
LL发布了新的文献求助20
2秒前
3秒前
3秒前
打工仔完成签到 ,获得积分10
3秒前
科研涛完成签到,获得积分10
3秒前
土豆酱完成签到 ,获得积分10
5秒前
微笑以南完成签到,获得积分10
6秒前
aaaa完成签到 ,获得积分10
6秒前
11111完成签到,获得积分20
6秒前
崔洪瑞完成签到,获得积分10
6秒前
wgm发布了新的文献求助10
6秒前
Lucas应助myc641采纳,获得10
7秒前
7秒前
子车谷波发布了新的文献求助10
7秒前
li发布了新的文献求助10
8秒前
斯文以蓝完成签到,获得积分10
9秒前
9秒前
10秒前
tian完成签到,获得积分10
10秒前
七七发布了新的文献求助30
11秒前
12秒前
待烟散尽云起时完成签到,获得积分10
12秒前
斯文以蓝发布了新的文献求助10
12秒前
kumarr发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
搜集达人应助英勇的幻露采纳,获得80
14秒前
王梓萌发布了新的文献求助10
15秒前
科研通AI6应助风清扬采纳,获得10
15秒前
15秒前
16秒前
16秒前
云村村民完成签到,获得积分10
17秒前
ky一下发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244