Classification of Common Household Plastic Wastes Combining Multiple Methods Based on Near-Infrared Spectroscopy

低密度聚乙烯 高密度聚乙烯 线性判别分析 材料科学 聚乙烯 主成分分析 聚丙烯 聚氯乙烯 聚苯乙烯 人工智能 复合材料 计算机科学 聚合物
作者
Qinyuan Duan,Jia Li
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:1 (7): 1065-1073 被引量:54
标识
DOI:10.1021/acsestengg.0c00183
摘要

This work aims to classify seven common household plastic types which include polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and polycarbonate (PC) utilizing near-infrared (NIR) spectroscopy. Four methods including linear discriminant analysis (LDA), partial least-squares discriminant analysis (PLS-DA), spectral angle mapper (SAM), and support vector machine (SVM) were tested for their classification performances, and principal component analysis (PCA) was applied before LDA and SVM. All the classification models were built based on virgin plastics. The results showed that seven types of plastic could be classified excellently with all the methods when the test sets were composed of virgin samples. When the models were tested on waste plastics, most types could be well classified, and all the misclassifications occurred between HDPE and LDPE and PET and PC. Then for HDPE and LDPE and PET and PC that were prone to be misidentified, some specific spectral bands were reselected for further classification. To achieve the best result, an approach combining PCA, SVM, LDA, and PLS-DA was presented. The validation results showed significant improvement, with the F1 scores of LDPE and HDPE increasing from 65.2% to 86.7% and 24.2% to 84.7%, respectively, and 100% accuracy was achieved for the other five types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啸傲完成签到,获得积分10
刚刚
刚刚
Criminology34应助MiManchi采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
晨曦完成签到,获得积分10
2秒前
4秒前
xhj发布了新的文献求助10
5秒前
我是老大应助啸傲采纳,获得10
5秒前
浮游应助7777采纳,获得10
5秒前
wuhaixia发布了新的文献求助20
6秒前
6秒前
whitesheep发布了新的文献求助10
6秒前
露露完成签到,获得积分10
7秒前
天天快乐应助纪修染采纳,获得10
7秒前
gaga完成签到,获得积分10
8秒前
KAI发布了新的文献求助10
10秒前
12秒前
12秒前
浮游应助标致的问晴采纳,获得30
13秒前
13秒前
14秒前
1806063938完成签到,获得积分20
14秒前
刘文杰完成签到,获得积分10
14秒前
zq完成签到 ,获得积分10
14秒前
草影花飘发布了新的文献求助10
16秒前
英俊的铭应助brilliance采纳,获得10
16秒前
FashionBoy应助科研小秦采纳,获得20
16秒前
16秒前
嗡嗡完成签到,获得积分10
17秒前
浮游应助余佘采纳,获得10
17秒前
11122完成签到,获得积分10
17秒前
lizhiqian2024发布了新的文献求助10
18秒前
19秒前
烧仙草之发布了新的文献求助10
19秒前
王铭卓完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
abaaba发布了新的文献求助30
21秒前
wuhaixia完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5102955
求助须知:如何正确求助?哪些是违规求助? 4313670
关于积分的说明 13441186
捐赠科研通 4141772
什么是DOI,文献DOI怎么找? 2269328
邀请新用户注册赠送积分活动 1272093
关于科研通互助平台的介绍 1208490